Advertisement

Emerging Network Activity in Dissociated Cultures of Neocortex: Novel Electrophysiological Protocols and Mathematical Modeling

  • Michele Giugliano
  • Maura Arsiero
  • Pascal Darbon
  • Jürg Streit
  • Hans-Rudolf Lüscher

Keywords

Network Activity Model Neuron Membrane Voltage American Physiological Society Neocortical Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, L.F. and Dayan, P. (2001). Theoretical Neuroscience. MIT Press, Cambridge.Google Scholar
  2. Abeles, M. (1991). Relations between membrane potential and the synaptic response curve. In Corticonics: Neural Circuits of the Cerebral Cortex, Cambridge University Press, Cambridge, UK, Chap. 4, pp. 118–149.Google Scholar
  3. Abramowitz, M. and Stegun, I.A. (1994). Tables of Mathematical Functions. Dover, New York.Google Scholar
  4. Amit, D.J. (1989). Modeling Brain Function. Cambridge University Press, Cambridge, UK.Google Scholar
  5. Amit, D.J. and Brunel, N. (1997). Model of global spontaneous activity and local structured (learned) delay activity during delay. Cerebral Cortex 7: 237–252.PubMedCrossRefGoogle Scholar
  6. Bove, M., Martinoia, S., Verreschi, G., Giugliano, M., and Grattarola, M. (1998). Analysis of the signals generated by networks of neurons coupled to planar arrays of microtransducers in simulated experiments. Biosens. Bioelectron. 13: 601–612.PubMedCrossRefGoogle Scholar
  7. Brunel, N. (2000). Persistent activity and the single cell f-I curve in a cortical network model. Network 11: 261–80.PubMedCrossRefGoogle Scholar
  8. Brunel, N. and Wang, X.J. (2003). What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J. Neurophysiol., 90: 415–30.PubMedCrossRefGoogle Scholar
  9. Bulloch, A.G.M. and Syed, N.I. (1992). Reconstruction of neuronal networks in culture. Trends Neurosci., 15: 422–27.PubMedCrossRefGoogle Scholar
  10. Canepari, M., Bove, M., Maeda, E., Cappello, M., and Kawana, A. (1997). Experimental analysis of neuronal dynamics in cultured cortical networks and transitions between different patterns of activity. Biol. Cybern., 77: 153–62.PubMedCrossRefGoogle Scholar
  11. Chance, F.S., Abbott, L.F., and Reyes, A.D. (2002). Gain modulation from background synaptic input. Neuron 35: 773–782.PubMedCrossRefGoogle Scholar
  12. Cox, D.R. and Miller, H.D. (1965). The Theory of Stochastic Processes. Chapman & Hall, London.Google Scholar
  13. Destexhe, A. and Paré, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81: 1531–1547.PubMedGoogle Scholar
  14. Destexhe, A. and Paré, D. (2000). A combined computational and intracellular study of correlated synaptic bombardment in neocortical pyramidal neurons in vivo. Neurocomput. 32: 113–119.CrossRefGoogle Scholar
  15. Destexhe, A., Mainen, Z.F., and Sejnowski, T.J. (1994). Synaptic transmission and neuromodulation using a common kinetic formalism. J. Comp. Neurosci., 1: 195–230.CrossRefGoogle Scholar
  16. Destexhe, A., Rudolph, M., and Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Rev. 4: 739–51.CrossRefGoogle Scholar
  17. Douglas, R.J. and Martin, K.A. (1990). Neocortex. In: The Synaptic Organization of the Brain: 3rd edition. Oxford University Press, New York, Chap. 12, pp. 389–438.Google Scholar
  18. Fleidervish, I., Friedman, A., and Gutnick, M.J. (1996). Slow inactiavation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J. Physiol. 493.1: 83–97.Google Scholar
  19. Fourcaud, N. and Brunel, N. (2002). Dynamics of the firing probability of noisy integrateand-fire neurons. Neural Comp. 14: 2057–2110.CrossRefGoogle Scholar
  20. Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., and Brunel, N. (2003). Howspike generation mechanisms determine the neuronal response to fluctuating inputs. J. Neurosci., 23(37): 11628–11640.PubMedGoogle Scholar
  21. Fuhrmann, G., Markram, H., and Tsodyks, M. (2002). Spike frequency adaptation and neocortical rhythms. J. Neurophysiol. 88: 761–770.PubMedGoogle Scholar
  22. Fusi, S. and Mattia, M. (1999). Collective behavior of networks with linear (VLSI) integrate and fire neurons. Neural Comp. 11: 633–652.CrossRefGoogle Scholar
  23. Gerstein, G.L. and Mandelbrot, B. (1964). Random walk models for the spike activity of a single neuron. Biophys. J. 4: 41–68.PubMedGoogle Scholar
  24. Gerstner, W. (2000). Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking. Neural Comp. 12: 43–89.CrossRefGoogle Scholar
  25. Giugliano, M. (2000). Synthesis of generalized algorithms for the fast computation of synaptic conductances with Markov kinetic models in large network simulations. Neural Comput. 12(4): 771–799.CrossRefGoogle Scholar
  26. Giugliano, M., Darbon, P., Arsiero, M., Lüscher, H.-R., and Streit, J. (2004). Single-neuron discharge properties and network activity in dissociated cultures of neocortex. J. Neurophysiol. 92(2): 977–996.PubMedCrossRefGoogle Scholar
  27. Giugliano, M., La Camera, G., Rauch, A., Lüscher, H.-R., and Fusi, S. (2002). Nonmonotonic current-to-rate response function in a novel integrate-and-fire model neuron. In: Dorronsoro, J.R., ed., Proceedings of ICANN2002, Springer, New York, pp. 141–146.Google Scholar
  28. Grattarola, M. and Martinoia, S. (1993). Modeling the neuron-microtransducer junction: From extracellular to patch recording. IEEE Trans. Biomed. Eng. 40: 35–41.PubMedCrossRefGoogle Scholar
  29. Grattarola, M. and Massobrio, G. (1998). Bioelectronics Handbook: MOSFETs, Biosensors, Neurons. McGraw-Hill, New York.Google Scholar
  30. Gross, G.W. (1979). Simultaneous single-unit recording in vitro with a photoetched laser deinsulated, gold multielectrode surface. IEEE Trans. Biomed. Eng. 26: 273–279.PubMedGoogle Scholar
  31. Gross, G.W., Wen, W., and Lin, J. (1985). Transparent indium-tin oxide patterns for extracellular, multisite recordings in neuronal cultures. J. Neurosci. Meth. 15: 243–252.CrossRefGoogle Scholar
  32. Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F.J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch. 391: 85–100.CrossRefGoogle Scholar
  33. Hodgkin, A.L. and Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117: 500–544.PubMedGoogle Scholar
  34. Holt, G.R., Softky, W.R., Koch, C., and Douglas, R.J. (1996). Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J. Neurophysiol. 75(5): 1806–1814.PubMedGoogle Scholar
  35. Huettner, J.E. and Baughman, R.W. (1986). Primary culture of identified neurons from the visual cortex of postnatal rats. J. Neurosci. 6: 3044–3060.PubMedGoogle Scholar
  36. Jimbo, Y., Tateno, T., and Robinson, H.P.C. (1999). Simultaneous induction of pathwayspecific potentiation and depression in networks of cortical neurons. Biophys. J. 76: 670–678.PubMedCrossRefGoogle Scholar
  37. Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H.P.C., and Kawana, A. (1996). Spontaneous periodic synchronized bursting during formation of mature patterns of connections in cortical cultures. Neurosci. Lett. 206: 109–112.PubMedCrossRefGoogle Scholar
  38. La Camera, G., Rauch, A., Senn, W., Lüscher, H.-R., and Fusi, S. (2002). Firing rate adaptation without losing sensitivity to fluctuations. In: Dorronsoro, J.R., ed., Proceedings of ICANN2002, Springer, New York, pp. 180–185.Google Scholar
  39. La Camera, G., Senn, W., and Fusi, S. (2003). Equivalent networks of conductance-and current-driven neurons. In: Proceedings of ICANN/ICONIP, Instanbul, Turkey.Google Scholar
  40. Maeda, E., Kuroda, Y., Robinson, H.P.C., and Kawana, A. (1998). Modification of parallel activity elicited by propagating bursts in developing networks of rat neocortical neurones. Eur. J. Neurosci. 10: 488–496.PubMedCrossRefGoogle Scholar
  41. Maeda, E., Robinson, H.P., and Kawana, A. (1995). The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons. J. Neurosci. 15(10): 6834–6845.PubMedGoogle Scholar
  42. Mainen, Z.F. and Sejnowski, T. (1995). Reliability of spike timing in neocortical neurons. Science, 268: 1503.PubMedGoogle Scholar
  43. Marom, S. and Shahaf, G. (2002). Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy. Quart. Rev. Biophys. 35: 63–87.CrossRefGoogle Scholar
  44. Mattia, M. and Del Giudice, P. (2002). Population dynamics of interacting spiking neurons. Phys. Rev. E 66(5): 051917.CrossRefGoogle Scholar
  45. McCormick, D.A., Connors, B.W., Lightfall, J.W., and Prince, D.A. (1985). Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 59: 782–806.Google Scholar
  46. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. (2002). Network motifs: Simple building blocks of complex networks. Science, 298(5594): 824–827.PubMedCrossRefGoogle Scholar
  47. Muramoto, K., Ichikawa, M., Kawahara, M., Kobayashi, K., and Kuroda, Y. (1993). Frequency of synchronous oscillations of neuronal activity increases during development and is correlated to the number of synapses in cultured cortical neuron networks. Neurosci. Lett. 163: 163–165.PubMedCrossRefGoogle Scholar
  48. Nakanishi, K. and Kukita, F. (1998). Functional synapses in synchronized bursting of neocortical neurons in culture. Brain Res., 795(1–2): 137–146.PubMedCrossRefGoogle Scholar
  49. Nakanishi, K., Kukita, F., Asai, K., and Kato, T. (2001). Recurrent subthreshold electrical activities of rat neocortical neurons progress during long-term culture. Neurosci. Lett. 304(1–2): 85–88.PubMedCrossRefGoogle Scholar
  50. Nakanishi, K., Nakanishi, M., and Kukita, F. (1999). Dual intracellular recording of neocortical neurons in a neuron-glia co-culture system. Brain Res. Prot. 4: 105–114.CrossRefGoogle Scholar
  51. Poliakov, A.V., Powers, R.K., and Binder, M.D. (1997). Functional identification of the input-output transforms of motoneurones in the rat and cat. J. Physiol. 504.2: 401–424.CrossRefGoogle Scholar
  52. Potter, S.M. and DeMarse, T.B. (2001). A new approach to neuronal cell culture for long-term studies. J. Neurosci. Meth. 59: 782–806.Google Scholar
  53. Powers, R.K., Sawczuk, A., Musick, J.R., and Binder, M.D. (1999). Multiple mechanisms of spike-frequency adaptation in motoneurones. J.Physiol. (Paris) 93: 101–114.CrossRefGoogle Scholar
  54. Press, W., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. (1992). Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York.Google Scholar
  55. Protopapas, A.D. and Bower, J.M. (2001). Spike coding in pyramidal cells of the piriform cortex of rat. J. Neurophysiol. 86: 1504–1510.PubMedGoogle Scholar
  56. Rauch, A., La Camera, G., Lüscher, H.-R., Senn, W., and Fusi, S. (2003). Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents. J. Neurophysiol. 90: 1598–1612.PubMedCrossRefGoogle Scholar
  57. Reutimann, J., Giugliano, M., and Fusi, S. (2003). Event-driven simulation of spiking neurons with stochastic dynamics. Neural Comp. 15: 811–830.CrossRefGoogle Scholar
  58. Ricciardi, L.M. (1977). Diffusion Processes and Related Topics in Biology. Springer, Berlin.Google Scholar
  59. Risken, H. (1984). The Fokker-Planck Equation: Methods of Solution and Applications. Springer, Berlin.Google Scholar
  60. Robinson, H.P.C., Kawahara, M., Jimbo, Y., Torimitsu, K., Kuroda, Y., and Kawana, A. (1993). Periodic synchronized bursting and intracellular calcium transients elicited by low magnesium in cultured cortical neurons. J. Neurophysiol. 70: 1606–1616.PubMedGoogle Scholar
  61. Salinas, E. (2003). Background synaptic activity as a switch between dynamical states in a network. Neural Comp. 15: 1439–1475.CrossRefGoogle Scholar
  62. Sanchez-Vives, M.V. and McCormick, D.A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3: 1027–1034.PubMedCrossRefGoogle Scholar
  63. Sanchez-Vives, M.V., Nowak, L.G., and McCormick, D.A. (2000). Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J. Neurosci. 20: 4286–4299.PubMedGoogle Scholar
  64. Sawczuk, A., Powers, R.K., and Binder, M.D. (1997). Contribution of outward currents to spike frequency adaptation in hypoglossal motoneurons of the rat. J. Physiol. 78: 2246–2253.Google Scholar
  65. Schwindt, P.C., Spain, W.J., and Crill, W.E. (1989). Long-lasting reduction of excitability by a sodium-dependent potassium current in cat neocortical neurons. J. Neurophysiol. 61: 233–244.PubMedGoogle Scholar
  66. Shadlen, M.N. and Newsome, W.T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18(10): 3870–3896.PubMedGoogle Scholar
  67. Silberberg, G., Bethge, M., Markram, H., Pawelzik, K., and Tsodyks, M. (2004). Dynamics of population rate codes in ensembles of neocortical neurons. J. Neurophysiol. 91(2): 704–709.PubMedCrossRefGoogle Scholar
  68. Smith, G.D., Cox, C.L., Sherman, S. M., and Rinzel, J. (2000). Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. J. Neurophysiol. 83(1): 588–610.PubMedGoogle Scholar
  69. Stengler, D.A. and McKenna, T.M. (1994). Enabling Technologies for Cultured Neural Networks. Academic Press, London.Google Scholar
  70. Steriade, M. (2001). Similar and contrasting results from studies in the intact and sliced brain. In: The Intact and Sliced Brain, Bradford Books, MIT Press, Cambridge, MA, Chap. 3, pp. 103–190.Google Scholar
  71. Streit, J., Tscherter, A., Heuschkel, M.O., and Renaud, P. (2001). The generation of rhythmic activity in dissociated cultures of rat spinal cord. Eur. J. Neurosci. 14: 191–202.PubMedCrossRefGoogle Scholar
  72. Tscherter, A., Heuschkel, M.O., Renaud, P., and Streit, J. (2001). Spatiotemporal characterization of rhythmic activity in spinal cord slice cultures. Eur. J. Neurosci. 14: 179–190.PubMedCrossRefGoogle Scholar
  73. Tsodyks, M., Uziel, A., and Markram, H. (2000). Synchrony generation in recurrent networks with frequency-dependent synapses. J. Neurosci. 20:RC50: 1–5.Google Scholar
  74. Tuckwell, H.C. (1988). Introduction to Theoretical Neurobiology. Cambridge University Press, New York.Google Scholar
  75. Turrigiano, G.G. and Nelson, S.B. (2004). Homeostatic plasticity in the developing nervous system. Nature Rev. Neurosci. 5(2): 97–107.CrossRefGoogle Scholar
  76. Van den Pol, A.N., Obrietan, K., and Belousov, A. (1996). Glutammate hyperexcitability and seizure-like activity throughout the brain and spinal cord upon relief from chronic glutammate receptor blockade in culture. Neuroscience 74: 653–674.CrossRefGoogle Scholar
  77. Van Huizen, F., Romijn, H.J., and Corner, M.A. (1987). Indications for a critical period for synapse elimination in developing rat cerebral cortex cultures. Brain Res., 428: 1–6.PubMedGoogle Scholar
  78. Van Vreeswijk, C., and Hansel, D. (2001). Patterns of synchrony in neural networks with spike adaptation. Neural Comp. 13: 959–992.CrossRefGoogle Scholar
  79. Wang, X.J. (2001). Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 24(8): 455–463.PubMedCrossRefGoogle Scholar
  80. Wiedemann, U.A. and Lüthi, A. (2003). Timing of network synchronization by refractory mechanisms. J. Neurophysiol. 90: 3902–3911.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Michele Giugliano
    • 1
  • Maura Arsiero
    • 2
  • Pascal Darbon
    • 3
  • Jürg Streit
    • 2
  • Hans-Rudolf Lüscher
    • 2
  1. 1.Brain Mind InstituteEcole Polytechnique Federale de LausanneSwitzerland
  2. 2.Institute of PhysiologyUniversity of BernBernSwitzerland
  3. 3.Plasticität et Physio-Pathologie de la MontricitätCNRS et Universität de la MäditerranäeMarseilleFrance

Personalised recommendations