MEMS/NEMS pp 383-443 | Cite as

GaAs Thermally Based MEMS Devices—Fabrication Techniques, Characterization and Modeling

MEMS Device Design and Fabrication MEMS Device Thermo-Mechanical Characterization MEMS Device Thermo-Mechanical Modeling
  • Tibor Lalinský
  • Milan Držík
  • Jiří Jakovenko
  • Miroslav Husák


Silicon (Si) based MicroElectroMechanical Systems (MEMS) are now well understood and widely used in various integrated micromachined microsensors and microactuators. In relation to this, gallium arsenide (GaAs) offers a number of material-related properties and technological advantages over Si [1]–[3]. These include well know properties, such as direct band gap transition and high electron mobility.


Residual Stress GaAs Substrate Gallium Arsenide Laser Doppler Vibrometer Electronic Speckle Pattern Interferometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leclercq, J.L., Ribas, R.P., Karam J.M., and Viktorovitch P., III-V Micromachined Devices for Microsystems, Microelectronics Journal, 1998;29:613–619.CrossRefGoogle Scholar
  2. 2.
    Hjort, K., Soderkvist J., and Jan-Ake Schweitz, Galium Arsenide as a Mechanical Material, J. Micromech. Microeng., 1994;4:1–13.CrossRefGoogle Scholar
  3. 3.
    Lalinský, T., Kuzmík, J., Porges, M., Haščík, Š., Mozolová, Ž., and Grňo L., Monolithic GaAs MESFET Power Sensor Microsystem, Electronics Letters, 1995;31:1914–1915.CrossRefGoogle Scholar
  4. 4.
    Söderkvist J., A phenomenological Method of Predicting the Performance of Piezoelectric Beams, J. Micromech. Microeng., 1991;1:16–24.CrossRefGoogle Scholar
  5. 5.
    Ho, F. and Yamamoto, Y., Piezoresistive-piezoelectric Gallium Arsenide Atomic Force Microscope Cantilever, ERATO Quantum Fluctuation Project, E.L. Ginzton Laboratory, Stanford University, http://wwwsnf.stanford.eduGoogle Scholar
  6. 6.
    Haščík, Š., Lalinský, T., Kuzmík, J., Porges, M., and Mozolová, Ž., The fabrication of Thin GaAs Cantilever Beams for Power Sensor Microsystem Using RIE, Vacuum, 1996;47:1215–1217.CrossRefGoogle Scholar
  7. 7.
    Haščík, Š., Lalinský, T., Mozolova, Ž., and Kuzmík, J., Patterning of Cantilevers for Power Sensor Microsystem, Vacuum, 1998;51:307–309.CrossRefGoogle Scholar
  8. 8.
    Karam, J.M., Courtois, B., Holio, M., Leclercq, J.L., and Viktorovitch, P., Collective Fabrication of Gallium Arsenide Based Microsystems, Proceeding SPIE-micromachining and Microfabrication Process Tech. II, 1996, Vol. 2879, pp. 315–326.Google Scholar
  9. 9.
    Ribas, R.P., Leclercq, J.L., Karam, J.M., Courtois, B., and Viktorovitch, P., Bulk Micromachining Characterization of 0.2 µm HEMT MMIC Technology for GaAs MEMS Design, Materials Science and Engineering, 1998;B51:267–273.Google Scholar
  10. 10.
    Fobelets, K., Vounckx R., and Borghs, G., A GaAs Pressure Sensor Based on Resonant Tunneling Diodes, J. Micromech. Microeng., 1994;4:123–128.CrossRefGoogle Scholar
  11. 11.
    Dehé, A., Fricke, K., Mutanba K., and Hartnagel, H.L., A Piezoresistive GaAs Pressure Sensor with GaAs/AlGaAs Membrane Technology, J. Micromech. Microeng., 1995;5:139–142.CrossRefGoogle Scholar
  12. 12.
    Lalinský, T., Burian, E., Mozolová, Ž., Haščík, š., Kuzmík, J., Boháček, P., and Hatzopoulos, Z., The improvment in GaAs Power Sensor Microsystem Technology and Simulation, MICROSIM II—Simulation and Design of Microsystems and Microstructures, in R.A. Adey and Ph. Renaud (Ed.), Computational Mechanics Publications, Southampton, UK, Boston, USA, 1997, pp. 43–51.Google Scholar
  13. 13.
    Lalinský, T., Haščík, Š., Mozolová, Ž., Kuzmík, J., and Hatzopoulos, Z., Power Sensor Microsystem Technology and Characterization, Sensor and Materials, 1998;10:241–250.Google Scholar
  14. 14.
    Lalinský, T., Haščík, Š., Mozolová, Ž., Burian, E., and Držík, M., The Improved Performance of GaAs Micromachined Power Sensor Microsystem, Sensors Actuators A, 1999;76:241–246.CrossRefGoogle Scholar
  15. 15.
    Dehé, A., Krozer, V., Fricke, K., Klingbeil, H., Beilenhoff, K., and Hartnagel, H.L., Integrated Microwave Power Sensor, Electronics Letters, 1995;31:2187–2188.CrossRefGoogle Scholar
  16. 16.
    Dehé, A., Krozer, V., Chen B., and Hartnagel, H.L., High-sensitivity Microwave Power Sensor for GaAs-MMIC Implemention, Electronics Letters, 1996;32:2149–2150.CrossRefGoogle Scholar
  17. 17.
    Salzenstein, P., Dupois, O., Hélal, M., Lheurette, E., Vanbésien, O., Mounaix, P., and Lippens, D., Coplanar Waveguides on Dielectric Membranes Micromachined on a GaAs Substrate, Electronics Letters, 1996;32: 821–822.CrossRefGoogle Scholar
  18. 18.
    Dehé, A., Fricke, K., and Hartnagel, H.L., Infrared Thermopile Sensor Based on AlGaAs-GaAs Micromachining, Sens. Actuators A, 1995;46–47:432–436.CrossRefGoogle Scholar
  19. 19.
    Lalinský, T., Držík, M., Tomáška, M., Krnáč, M., Haščík, Š., Mozolová, Ž., Klasovitý, M., and Kostič, I., Coplanar Waveguides Supported by InGaP and GaAs/AlGaAs Membrane-like Bridges, J. Micromech. Microeng., 2002;12:465–469.CrossRefGoogle Scholar
  20. 20.
    Heisig, S. and Oesterschulze, E., Gallium Arsenide Probes for Scanning Near-field Probe Microscopy, Appl. Phys., 1998;A66:S385–S390.Google Scholar
  21. 21.
    Iwata, N., Wakayama, T., and Yamada, S., Establishment of Basic Process to Fabricate full GaAs Cantilever for Scanning Probe Microscope Applications, Sensors and Actuators A, 2004;111;26–31.CrossRefGoogle Scholar
  22. 22.
    Lalinský, T., Haščík, Š., Mozolová, Ž., Držík, M., and Hatzopoulos, Z., Micromachined Power Sensor Microsystem, Micromechanics Europe Workshop, Ulvik in Hardanger, Norway, 1998, pp. 139–142.Google Scholar
  23. 23.
    Lalinský, T., Držík, M., Haščík, Š., Mozolová, Ž., Kuzmík J., and Hatzopoulos, Z., Study of Bimetallic Effect in a GaAs Cantilever Beam of Power Sensor Microsystem, 2nd International Conference on Advanced Semiconductor Devices and Microsystems, Smolenice Castle, Slovakia, 1998, pp. 331–334.Google Scholar
  24. 24.
    Johansson, S., Ericson, F., and Jan-Ake Schweitz, Influence of Surface Coatings on Elasticity, Residual Stress, and Fracture Properties of Silicon Microelements, J. Appl. Phys., 1989;65:122–128.CrossRefGoogle Scholar
  25. 25.
    Lalinský, T., Burian, E., Držík, M., Haščík, Š., Mozolová, Ž., and Kuzmík, J., Thermal Actuation of a GaAs Cantilever Beam, J. Micromech. Microeng., 2000;10:293–298.CrossRefGoogle Scholar
  26. 26.
    Lalinský, T., Burian, E., Držík, M., Haščík, Š., Mozolová, Ž., Kuzmík, J., and Hatzopoulos, Z., Performance of GaAs Micromachined Microactuator, Sensors and Actuators, 2000;85:365–370.CrossRefGoogle Scholar
  27. 27.
    Brice, J.C., Properties of Gallium Arsenide, 2nd Edition, EMIS Datareviews Series No. 2 (INSPEC (IEE), London, 1990), p. 7.Google Scholar
  28. 28.
    Takahashi, N.S., Properties of Aluminium Gallium Arsenide, in S. Adachi (Ed.), EMIS Datareviews Series No. 7, (INSPEC (IEE), London, 1993), p. 3.Google Scholar
  29. 29.
    Adachi, S., GaAs and Related Materials (Bulk Semiconducting and Superlattice Properties), ISBN 9810219253, World Scientific Publishing Co. Pte. Ltd, 1994.Google Scholar
  30. 30.
    Adachi, S., Lattice Thermal Resistivity of III-V Compound Alloys, J. Appl. Phys. 1983;54:1844–1848.CrossRefGoogle Scholar
  31. 31.
    Adachi, S., GaAs, AlAs and AlxGa1−xAs Material Parameters for Use in Research and Device Applications, J. Appl. Phys. 1985;58:R1–29.CrossRefGoogle Scholar
  32. 32.
    Walkey, D.J., Smy, T.J., Macelwee, T., and Maliepaarad, M., Compact Representation of Temperature and Power Dependence of Thermal Resistance in Si, InP and GaAs Substrate Devices Using Linear Models, Solid-State Electronics, 2002;46:819–826.CrossRefGoogle Scholar
  33. 33.
    Hjort, K., Sacrificial Etching of III–V Compounds for Micromechanical Devices J. Micromech. Microeng., 1996;6:370–375.CrossRefGoogle Scholar
  34. 34.
    Collins, S.D., Etch Stop Techniques for Micromachining, J. Electrochemical Society, 1997;144:2242–2262.CrossRefGoogle Scholar
  35. 35.
    Fricke, K., Würf, J., Miao, J., Dehé, A., Rück, D., and Hartnagel, H.L., Fabrication of Microstructures for Integrated Sensors on GaAs, J. Micromech. Microeng., 1993;3:131–134.CrossRefGoogle Scholar
  36. 36.
    Miao, J., Hartnagel, H.L., Rück, D., and Fricke, K., The Use of Ion Implantation for Micromachining GaAs for Sensor Application, Sensors and Actuators A, 1995;46–47:30–34.CrossRefGoogle Scholar
  37. 37.
    Uenishi, Y., Tanaka, H., and Ukita, H., Characterization of AlGaAs Microstructure Fabricated by AlGaAs/GaAs Micromachining, IEEE Trans. On Electron Devices, 1994;41:1778–1783.CrossRefGoogle Scholar
  38. 38.
    Chong, N., Srinivas, T.A.S., and Ahmed, H., Performance of GaAs Microbridge Thermocouple Infrared Detectors, Journal of Microelectromechanical Systems, 1997;6:136–141.CrossRefGoogle Scholar
  39. 39.
    Ribas, R.P., Maskless Front-Side Bulk Micromachining Compatible to Standard GaAs IC Technology, Thesis, TIMA-CMP, Grenoble Cedex, France.Google Scholar
  40. 40.
    TIMA-Circuits Multi-Projects (CMP) Laboratory: 0.2 µm pHEMT GaAs E/D from OMMIC, Compatible Front-side Bulk Micromachining, Grenoble Cedex, France.Google Scholar
  41. 41.
    Lalinský, T., Držík, M., Matay, L., Kostič, I., Mozolová, Ž., Haščík, Š., and Krajcer, A., InGaP/Polyimide Membrane-like Bridges Fully Compatible with InGaP/InGaAs/GaAs Based HFETs, Proceedings of the International MEMS Workshop—iMEMS, Singapore, July 4–6, 2001, pp. 362–368, to be Published Also in Materials & Process Integration for MEMS, Edited by Francis E.H. Tay, Singapore, ISBN 1-4020-7175-2, 2002, pp. 53–75.Google Scholar
  42. 42.
    Lalinský, T., Haščík, Š., Mozolová, Ž., Burian, E., Tomáška, M., Krnáč, M., Držík, M., Škriniarová, J., Kostič, I., and Matay, L., Mechanically Fixed and Thermally Isolated Micromechanical Structures for GaAs Heterostructure Based MEMS Devices, Proceedings of the International Symposium on Microelectronics, Colorado, September 4–6 2002, pp. 87–92—to be Published Also in Microelectronics International, January 20, 2003, pp. 43–47.Google Scholar
  43. 43.
    Lalinský, T., Hotový, I., Haščík, Š., Mozolová, Ž., Kuzmík, J., and Pogany, D., Thin Film Resistance Temperature Sensors on GaAs, Proceeding of ASDAM’ 98 Conference, Smolenice Castle, Slovakia, 1998, pp. 243–246.Google Scholar
  44. 44.
    Lalinský, T., Hrkút, P., Mozolová, Ž., Kovačik, T., and Krajcer, A., Thermal Performance and Stability of Poly Si/Pt(Ni) Thin Film Temperature Sensors on GaAs, Proceedings of the 11th International Conference on Solid-State Sensors and Actuators, Munich, June 10–14, 2001, pp. 1496–1499.Google Scholar
  45. 45.
    Fricke, K., Hartnagel, H.L., Ritter, S., and Würfl, J., Micromechanically Structurized Sensors on GaAs: an Integrated Anemometer, Microelectronics Engineering, 1992;19:195–198.CrossRefGoogle Scholar
  46. 46.
    Fricke, K., A Micromachined Mass-flow Sensor With Integrated Electronics on GaAs, Sensors and Actuators A, 1994;45:91–94.CrossRefGoogle Scholar
  47. 47.
    Dehé, A. and Hartnagel, H.L., Free-standing AlGaAs Thermopilesfor Improved Infrared Sensor Design, IEEE Trans. on Electron Devices, 1996;43:1193–1199.CrossRefGoogle Scholar
  48. 48.
    Hava, S. and Hunsperger, R., Thermoelectric Properties of AlxGa1−xAs, J. of Appl. Phys., 1985;57:5330–5335.CrossRefGoogle Scholar
  49. 49.
    Pogany, D., Seliger, N., Lalinský, T., Kuzmík, J., Habaš, P., Hrkút, P., and Gornik, E., Study of Thermal Effects in GaAs Micromachined Power Sensor Microsystems by An Optical Interferometer Technique, Microelectronics Journal, 1998;29:191–198.CrossRefGoogle Scholar
  50. 50.
    Burian, E., Pogany, D., Lalinský, T., Seliger, N., and Gornik, E., Thermal Simulation and Characterization of GaAs Micromachined Power Sensor Microsystems, Sensors Actuators A, 1998;68:372–377.CrossRefGoogle Scholar
  51. 51.
    Lalinský, T., Haščík, Š., Mozolová, Ž., Držík, M., and Hatzopoulos, Z., The Improved Performance of GaAs Micromachined Power Sensor Microsystem, Proceedings of the 12th European Conference on Solid-State Transducers-EUROSENSORS XII, Southampton, September 13–16, 1998, pp. 739–742.Google Scholar
  52. 52.
    Dehé, A., Peerlings, J., Pfeiffer, J., Riemenschneider, R., Vogt, A., Streubel, K., Künzel, H., Meissner, P., and Hartnagel, H.L., III-V Compound Semiconductor Micromachined Actuator for Long Resonator Tunable Fabry-Pérot Detector, Sensors and Actuators A, 1998;68:365–371.CrossRefGoogle Scholar
  53. 53.
    Lalinský, T., Krnáč, M., Držík, M., Haščík, Š., and Mozolová, Ž., Micromechanical Thermal Converter Device Based on Polyimide-fixed Island Structure, The 14th Micromechanics Europe Workshop-MME03, Delft, November 2–4, 2003, pp. 45–48.Google Scholar
  54. 54.
    Lalinský, T., Držík, M., Chlpík, J., Krnáč, M., Haščík, Š., and Mozolová, Ž., Thermo-Mechanical Characterization of Micromachined GaAs Based Thermal Converter Using Contactless Optical Methods, In: Proceedings of EUROSENSORS XIII Conference, Roma September 12–15, 2004, p. 239.Google Scholar
  55. 55.
    Microwave Monolithic Integrated Transmitted Power Sensors and Their Industrial and Metrological Applications, NATO SfP project No.: SfP-974172.Google Scholar
  56. 56.
    Born, M. and Wolf, E., Principles of Optics, Pergamon Press, New York, 1975.Google Scholar
  57. 57.
    Ohring, M., The Material Science of Thin Films, Academic Press, New York, 1992.Google Scholar
  58. 58.
    Bertollotti, M., Bogdanov, V., Ferrari, A., Jascow, A., Nazarova, N., Pikhtin, A., and Schirone, L., Temperature Dependence of the Refractive Index in Semiconductors, J.Optical Soc. of America, 1990;7:918–922.CrossRefGoogle Scholar
  59. 59.
    McCaulley, J.A., Donnelly, V.M., Vernon, M., and Taha, I. Temperature Dependence of the Near-infrared Refractive Index of Silicon, Gallium Arsenide, and Indium Phosphide, Physical Review B, 1994;49:7408–7017.CrossRefGoogle Scholar
  60. 60.
    Tiziani, H.J., Optical Metrology of Engineering Surfaces—Scope and Trends, in P.K. Rastogi (Ed.), Optical Measurement Techniques and Applications, Artech House, Boston, 1997, pp. 15–49.Google Scholar
  61. 61.
    Sheppard, C.J.R. and Roy, M., Low-coherence Interference Microscopy, in P. Torok and F.-J. Kao (Eds.), Optical Imaging and Microscopy, Springer, Berlin, 2003.Google Scholar
  62. 62.
    Davis, C.Q. and Freeman, D.M., Using a Light Microscope to Measure Motions with Nanometer Accuracy, Optical Engineering, 1998;37:1299–304.CrossRefGoogle Scholar
  63. 63.
    Sheppard, C.J.R., Roy, M., and Sharma, M.D., Image Formation in Low-coherence and Confocal Interference Microscopes, Applied Optics, 2004;43:1491–1502.Google Scholar
  64. 64.
    Bosseboef, A. and Petitgrand, S., Characterization of the Static and Dynamic Behaviour of M(O)EMS by Optical Techniques: Status and Trends, Proceeding MME’02, Sinaia, Romania, 2002, pp. 229–241.Google Scholar
  65. 65.
    Wilson, T., Confocal Microscopy, Academic Press, New York, 1990.Google Scholar
  66. 66.
    PLμ: Confocal Imaging Profiler, The Innovative Concept for Non-contact 3D, Scholar
  67. 67.
    Jordan, H.J., Brodmann, R., Valentin, J., and Grigat, M., Confocal White Light Microscopy, Scholar
  68. 68.
    Vlassak, J.J. and Nix, W.D., A New Bulge Test Technique for The Determination of Young’s Modulus and Poisson’s Ratio of Thin Films, J. Mater. Res., 1992;7:3242–3249.CrossRefGoogle Scholar
  69. 69.
    FLATSCAN 200—Automated 2D/3D—Measurement System for Thin Film Stress and Surface Curvature, Scholar
  70. 70.
    KLA Tencor FLX-2320-S Film Stress Measurement Systém, Scholar
  71. 71.
    Drzik, M., Vanek, O., and Kempny, M., Silicon Wafers Deformation Measurement by Using Optical Methods, Proceeding of 41st International Science Colloquium, 1996, Vol. 1, pp. 597–602.Google Scholar
  72. 72.
    Nemcsics, A., Szabo, J., Gurban, S., and Csontos, L., Mechanical Study of the Strained InxGa1−xAs/GaAs Heterostructures, in J. Novak and A. Schlachetzki (Eds.), Heterostructure Epitaxy and Devices, Kluwer Academic Publ., 1996, pp. 103–106.Google Scholar
  73. 73.
    Drzik, M., Butschke, J., Fallmann, W., Haugeneder, E., and Loeschner, H., Optical Measurement of Stress in Thin Membranes, Proceeding of 26th IMEKO World Congress, Vienna, CD-ROM, 2000.Google Scholar
  74. 74.
    Levtchenko, V.M. and Gulidov, D.N., Mechanical Treatment of Semiinsulator (SI) GaAs (100) and its Effect on Geometrical and Electro-physical Parameters, Proceeding of 5th Science and Business Conference SILICON’96 Vol. 2 Roznov p. Radhostem, 1996, pp. 278–292.Google Scholar
  75. 75.
    Gunnars, J. and Wiklund, U., Determination of Growth-induced Strain and Thermoelastic Properties of Coatings by Curvature Measurements, Materials Science and Engineering, 2002; Vol. A336, pp. 7–21.Google Scholar
  76. 76.
    Chen, K.-S. and Ou, K.-S., Modification of Curvature-based Thin-film Residual Stress Measurement for MEMS Applications, J. Micromech. Microeng., 2002;12:917–924.CrossRefGoogle Scholar
  77. 77.
    Fang, W. and Wickert, J.A., Comments on Measuring Thin-film Stresses Using Bi-layer Micromachined Beams, J. Micromech. Microeng., 1995;5:276–281.CrossRefGoogle Scholar
  78. 78.
    Yang, J.C.S., Prevention of Thermal Bending of Multilayered Beams and Plates, Experimental Mechanics 1975;15:418–423.CrossRefGoogle Scholar
  79. 79.
    Suhir, E., Stresses in Bi-metal Thermostats, J. Applied Mechanics, 1986;53:657–660.CrossRefGoogle Scholar
  80. 80.
    Lavitska, E., Thermal Strain and Its Influence on Characterization of Semiconductor Elements, Proceeding of 5th NEXUSPAN Workshop on Thermal Aspects in Microsystem Technology, Budapest, 1998; pp. 115–120.Google Scholar
  81. 81.
    Zhang, X., Ghodssi, R., Chen, K.-S., Ayon, A.A., and Spearing, S.M., Residual Stress Characterization of Thick PECVD TEOS Film For Power MEMS Applications, Proceeding of Solid-State Sensor and Actuator Workshop, Hilton Head Is, SC, 2000, pp. 1–4.Google Scholar
  82. 82.
    Castellini, P., Revel, G.M., and Scalise, L., Application of Lasers for Non-contact Excitation and Measurement of Vibration, Proceeding SPIE—4th Int. Conference on Vibration Measurements by Laser Technique, 2000, Vol. 4072, pp. 280–291.Google Scholar
  83. 83.
    Jia, W. and Enyao, Zh., Applications of Laser Vibrometer in Vibration Measurement of Microstructures, Proceeding SPIE, 1996;2868:318–325.CrossRefGoogle Scholar
  84. 84.
    Petitgrand, S., Yahiaoui, R., Bosseboef, A., and Danaie, K., Quantitative Time-average Microscopic Interferometry for Micromechanical and Art Conservation, Proceeding SPIE, 2001;4400:51–60.CrossRefGoogle Scholar
  85. 85.
    Abdel-Rahman, E.M., Younis, M.I., and Nayfeh, A.H., Characterization of the Mechanical Behavior of An Electrically Actuated Microbeam, J. Micromech. Microeng., 2002;12:759–766.CrossRefGoogle Scholar
  86. 86.
    Lawrence, E.M. and Speller, K.E., MEMS Characterization Using Laser Doppler Vibrometry, Proceeding of SPIE, 2002;4980:323–329.Google Scholar
  87. 87.
    Kopystyski P., Obermayer H., Delfs H., Hohenester W., and Loser A., Silicon RF Power Sensor from DC to Microvawe, Microsystems Technologies 90, Springer, Berlin, 1990, p. 605.Google Scholar
  88. 88.
    Jaeggy, Baltes, H., and Moser, D., Thermoelectric AC Power Sensor by CMOS Technology, IEEE Electron Device Letters, 1992;13:366.CrossRefGoogle Scholar
  89. 89.
    Senturia, S.D., Microsystem Design, Kluwer Academic Publisher, book, 2001.Google Scholar
  90. 90.
    Elwensoekk, M. and Wiegerink, R., Mechanical Mikrosensors, Springer, book, 2000.Google Scholar
  91. 91.
    Tai-Ran Hsu, MEMS and Microsystems Design and Manufacture, Mc Graw Hill, book, 2001.Google Scholar
  92. 92.
    MEMCAD—User Manual.Google Scholar
  93. 93.
    Georgakilas, A., Lalinský, T., Husák, M., and Grňo, L., Microwave Monilitic Integrated Transmitted Power Sensor and Their Industrial and Metrological Applications, NATO SfP Project No.: SfP—974172, 1999.Google Scholar
  94. 94.
    Jakovenko, J. and Husák, M., Thermo-mechanical Simulation of GaAs Power Sensor Microsystem, Poster 2001 Conference, Prague, Czech Republic, 2001.Google Scholar
  95. 95. Scholar
  96. 96.
    Kim, Y. and Allen, G., Measurement of Mechanical Properties of Polyimide Films Using Micromachined Resonant String Structures, Transactions on Components and Packaging Technology, 1999;22(2).Google Scholar
  97. 97.
    Rizk, J., Chaiban, E., and Rebeiz, G., Steady State Thermal Analysis and High-Power Reliability Considerations of RF MEMS Capacitive Switches, Proceedings of IMS-02, 2002.Google Scholar
  98. 98. Scholar
  99. 99.
    Jakovenko, J., Husak, M., and Lalinsky, T., Design and Simulation of Micromechanical Thermal Converter for RF Power Sensor Microsystem, Microelectronics Reliability, 2004;141–148.Google Scholar
  100. 100.
    Jakovenko, J., Husak, M., and Lalinsky, T., Design and Simulation of The GaAs Micromechanical Thermal Converter for Microwave Transmitted Power Sensor, Proceedings of Nanotechnology Conference, San Francisco, 2003, pp. 332–335.Google Scholar
  101. 101.
    Jakovenko, J., Husak, M., and Lalinsky, T., Modeling of Thermally Isolated Micromechanical Thermo Converter, The 17th European Conference on Solid-State Transducers, EUROSENSORS XVII, Guimaraes 2003, pp. 316–317.Google Scholar
  102. 102.
    Jakovenko, J., Husák, M., and Lalinsky, T., Thermo-mechanical Simulation and Modeling of RF Power Sensor Microsystem, IMAPS Proceedings 2002, 35th International Symposium on Microelectronics, Denver, Colorado, ISBN 0-930815-66-1, 2002, pp. 886–891.Google Scholar
  103. 103.
    Jakovenko, Husák, M., and Lalinsky, T., Thermo-mechanical Simulations of GaAs Based Microwave Power Sensor Microsystem, EUROSENSORS XVI Book of Abstracts, Prague, Czech Republic, ISBN 80-01-02576-4 2002, pp. 63–64.Google Scholar
  104. 104.
    Jakovenko, J. and Husák, M., MEMCAD Thermal Simulation of GaAs Based Membrane Bridge, Proceedings of 12th Micromechanics Europe Workshop (MME’01), Cork, 2001, pp. 225–228.Google Scholar
  105. 105.
    Incropera, F.P. and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, 2002.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Tibor Lalinský
    • 1
  • Milan Držík
    • 2
  • Jiří Jakovenko
    • 3
  • Miroslav Husák
    • 3
  1. 1.Institute of Electrical EngineeringSlovak Academy of SciencesBratislavaSlovakia
  2. 2.International Laser CenterBratislavaSlovakia
  3. 3.Dept. of MicroelectronicsCzech Technical UniversityPrague 6Czech Republic

Personalised recommendations