Coronavirus-Induced Demyelination and Spontaneous Remyelination

Growth factor expression and function
  • Regina C. Armstrong
  • Jeffrey M. Redwine
  • Donna J. Messersmith


MHV-A59 coronavirus infection produces a transient episode of demyelination that is followed by spontaneous remyelination. This paradigm provides a complex lesion environment to examine cellular and molecular mechanisms involved in successful CNS remyelination. Our work in this model has focused on the roles of platelet-derived growth factor and fibroblast growth factor 2 in regulating oligodendrocyte progenitor responses required for remyelination.

Key words

platelet-derived growth factor fibroblast growth factor estrous cycle gender demyelinating disease remyelination coronavirus cuprizone 


  1. 1.
    Armstrong R, Friedrich VL, Jr., Holmes KV, Dubois-Dalcq M. In vitro analysis of the oligodendrocyte lineage in mice during demyelination and remyelination. J Cell Biol. 1990;l11:1183–1195.CrossRefGoogle Scholar
  2. 2.
    Armstrong RC, Le TQ, Frost EE et al. Absence of fibroblast growth factor 2 promotes oligodendroglial repopulation of demyelinated white matter. J Neurosci. 2002;22:8574–8585PubMedGoogle Scholar
  3. 3.
    Bansal R, Pfeiffer SE. Regulation of oligodendrocyte differentiation by fibroblast growth factors. Adv Exp Med Biol. 1997;429:69–77PubMedGoogle Scholar
  4. 4.
    Bansil S, Lee HJ, Jindal S et al. Correlation between sex hormones and magnetic resonance imaging lesions in multiple sclerosis. Acta Neurol Scand. 1999;99:91–94PubMedGoogle Scholar
  5. 5.
    Bogler O, Wren D, Barnett SC et al. Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells. Proc Natl Acad Sci U S A. 1990;87:6368–6372PubMedCrossRefGoogle Scholar
  6. 6.
    Cottrell DA, Kremenchutzky M, Rice GP et al. The natural history of multiple sclerosis: a geographically based study. 5. The clinical features and natural history of primary progressive multiple sclerosis. Brain. 1999;122 (Pt 4):625–639PubMedCrossRefGoogle Scholar
  7. 7.
    Freeman ME. The neuroendocrine control of the ovarian cycle in the rat. In: Knobil E, Neill JD, eds. The Physiology of Reproduction. 2nd ed. New York, NY: Raven Press, 1994:613–658Google Scholar
  8. 8.
    Frost EE, Nielsen JA, Le TQ, Armstrong RC. PDGF and FGF2 regulate oligodendrocyte progenitor responses to demyelination. Journal of Neurobiology. 2003; 54:457–472.PubMedCrossRefGoogle Scholar
  9. 9.
    Jordan CA, Friedrich VL, Jr., Godfraind C et al. Expression of viral and myelin gene transcripts in a murine CNS demyelinating disease caused by a coronavirus. Glia. 1989;2:318–329PubMedCrossRefGoogle Scholar
  10. 10.
    Jordan CA, Friedrich VL, Jr., de Ferra F et al. Differential exon expression in myelin basic protein transcripts during central nervous system (CNS) remyelination. Cell Mol Neurobiol. 1990;10:3–18PubMedCrossRefGoogle Scholar
  11. 11.
    Kristensson K, Holmes KV, Duchala CS et al. Increased levels of myelin basic protein transcripts in virus-induced demyelination. Nature. 1986;322:544–547PubMedCrossRefGoogle Scholar
  12. 12.
    Lucchinetti C, Bruck W, Parisi J et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47:707–717PubMedCrossRefGoogle Scholar
  13. 13.
    Mason JL, Goldman JE. A2B5+ and O4+ Cycling progenitors in the adult forebrain white matter respond differentially to PDGF-AA, FGF-2, and IGF-1. Mol Cell Neurosci. 2002;20:30–42PubMedCrossRefGoogle Scholar
  14. 14.
    Matsushima GK, Morell P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol. 2001;11:107–116.PubMedCrossRefGoogle Scholar
  15. 15.
    Matthews AE, Weiss SR, Paterson Y. Murine hepatitis virus—a model for virus-induced CNS demyelination. J Neurovirol. 2002;8:76–85PubMedCrossRefGoogle Scholar
  16. 16.
    McKinnon RD, Matsui T, Dubois-Dalcq M, Aaronson SA. FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron. 1990;5:603–614.PubMedCrossRefGoogle Scholar
  17. 17.
    Messersmith DJ, Murtie JC, Le TQ et al. Fibroblast growth factor 2 (FGF2) and FGF receptor expression in an experimental demyelinating disease with extensive remyelination. J Neurosci Res. 2000;62:241–256.PubMedCrossRefGoogle Scholar
  18. 18.
    Parra B, Hinton DR, Marten NW et al. IFN-gamma is required for viral clearance from central nervous system oligodendroglia. J Immunol. 1999;162:1641–1647PubMedGoogle Scholar
  19. 19.
    Pozzilli C, Falaschi P, Mainero C et al. MRI in multiple sclerosis during the menstrual cycle: relationship with sex hormone patterns. Neurology. 1999;53:622–624PubMedGoogle Scholar
  20. 20.
    Redwine JM, Blinder KL, Armstrong RC. In situ expression of fibroblast growth factor receptors by oligodendrocyte progenitors and oligodendrocytes in adult mouse central nervous system. J Neurosci Res. 1997;50:229–237.PubMedCrossRefGoogle Scholar
  21. 21.
    Redwine JM, Armstrong RC. In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. J Neurobiol. 1998;37:413–428.PubMedCrossRefGoogle Scholar
  22. 22.
    Richardson WD, Pringle N, Mosley MJ et al. A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell. 1988;53:309–319PubMedCrossRefGoogle Scholar
  23. 23.
    Sango K, McDonald MP, Crawley JN et al. Mice lacking both subunits of lysosomal beta-hexosaminidase display gangliosidosis and mucopolysaccharidosis. Nat Genet. 1996; 14:348–352PubMedCrossRefGoogle Scholar
  24. 24.
    Smith R, Studd JW. A pilot study of the effect upon multiple sclerosis of the menopause, hormone replacement therapy and the menstrual cycle. J R Soc Med. 1992;85:612–613PubMedGoogle Scholar
  25. 25.
    Voskuhl RR, Palaszynski K. Sex hormones in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Neuroscientist. 2001;7:258–270PubMedCrossRefGoogle Scholar
  26. 26.
    Whitacre CC, Reingold SC, O’Looney PA. A gender gap in autoimmunity. Science. 1999;283:1277–1278PubMedCrossRefGoogle Scholar
  27. 27.
    Wolswijk G, Noble M. Cooperation between PDGF and FGF converts slowly dividing O-2A adult progenitor cells to rapidly dividing cells with charac-teristics of O-2A perinatal progenitor cells. J Cell Biol. 1992;118:889–900.PubMedCrossRefGoogle Scholar
  28. 28.
    Zaffaroni M, Ghezzi A. The prognostic value of age, gender, pregnancy and endocrine factors in multiple sclerosis. Neurol Sci. 2000;21:S857–860PubMedCrossRefGoogle Scholar
  29. 29.
    Zorgdrager A, De Keyser J. Menstrually related worsening of symptoms in multiple sclerosis. J Neurol Sci. 1997; 149:95–97PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Regina C. Armstrong
    • 1
    • 2
  • Jeffrey M. Redwine
    • 2
    • 3
  • Donna J. Messersmith
    • 1
    • 4
  1. 1.Department of Anatomy, Physiology, and GeneticsUniformed Services University of the Health SciencesBethesda
  2. 2.Program in NeuroscienceUniformed Services University of the Health SciencesBethesda
  3. 3.Neurome Inc.La Jolla
  4. 4.National Center for Biotechnology InformationBethesda

Personalised recommendations