Scatter Correction Strategies in Emission Tomography

  • H. Zaidi
  • K. F. Koral

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosenthal M. S. and Henry, L. J., Scattering in uniform media (for correction of nuclear medicine images). Phys Med Biol 35: 265–274 (1990).CrossRefGoogle Scholar
  2. 2.
    Zaidi H., Relevance of accurate Monte Carlo modeling in nuclear medical imaging. Med Phys 26: 574–608 (1999).CrossRefGoogle Scholar
  3. 3.
    Zaidi H. and Koral, K. F., Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 31: 761–782 (2004).CrossRefGoogle Scholar
  4. 4.
    Kim K. M., Watabe, H., Shidahara, M. et al., “Impact of scatter correction in the kinetic analysis of a D2 receptror ligand SPECT study.” IEEE Medical Imaging Conference, San Diego, Vol. 3; pp 1509–1512 (2001).Google Scholar
  5. 5.
    Klein O. and Nishina, Y., Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac Z. Z Phys 52: 853–868 (1929).MATHCrossRefADSGoogle Scholar
  6. 6.
    Buvat I., Benali, H., Todd_Pokropek, A. et al., Scatter correction in scintigraphy: the state of the art. Eur J Nucl Med 21: 675–694 (1994).CrossRefGoogle Scholar
  7. 7.
    Links J. M., Scattered photons as “good counts gone bad:” are they reformable or should they be permanently removed from society? J Nucl Med 36: 130–132 (1995).MathSciNetGoogle Scholar
  8. 8.
    Msaki P., Bentourkia, M. and Lecomte, R., Scatter degradation and correction models for high-resolution PET. J Nucl Med 37: 2047–2049 (1996).Google Scholar
  9. 9.
    Koral K. F., “Monte Carlo in SPECT scatter correction” in: Monte Carlo calculations in nuclear medicine: Applications in diagnostic imaging., edited by M Ljungberg, S-E Strand, and M A King (Institute of Physics Publishing, Bristol 1998), pp 165–181.Google Scholar
  10. 10.
    Zaidi H., Scatter modelling and correction strategies in fully 3-D PET. Nucl Med Commun 22: 1181–1184 (2001).CrossRefGoogle Scholar
  11. 11.
    Beekman F. J. and Viergever, M. A., Fast SPECT simulation including object shape dependent scatter. IEEE Trans Med Imaging 14: 271–282 (1995).CrossRefGoogle Scholar
  12. 12.
    Ljungberg M., “The Monte Carlo method applied in other areas of SPECT Imaging” in: Monte Carlo calculations in nuclear medicine: Applications in diagnostic imaging., edited by M Ljungberg, S-E Strand, and M A King (Institute of Physics Publishing, Bristol, 1998), pp 207–220.Google Scholar
  13. 13.
    Floyd C. E., Jaszczak, R. J., Harris, C. C. et al., Energy and spatial distribution of multiple order Compton scatter in SPECT: a Monte Carlo investigation. Phys Med Biol 29: 1217–1230 (1984).CrossRefGoogle Scholar
  14. 14.
    Ljungberg M. and Strand, S. E., Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions. J Nucl Med 31: 1560–1567 (1990).Google Scholar
  15. 15.
    Barney J. S., Rogers, J. G., Harrop, R. et al., Object shape dependent scatter simulations for PET. IEEE Trans Nucl Sci 38: 719–725 (1991).CrossRefADSGoogle Scholar
  16. 16.
    Frey E. C. and Tsui, B. M. W., Parameterization of the scatter response function in SPECT imaging using Monte Carlo simulation. IEEE Trans Nucl Sci 37: 1308–1315 (1990).CrossRefADSGoogle Scholar
  17. 17.
    Adam L. E., Karp, J. S. and Brix, G., Investigation of scattered radiation in 3D whole-body positron emission tomography using Monte Carlo simulations. Phys Med Biol 44: 2879–2895 (1999).CrossRefGoogle Scholar
  18. 18.
    Zaidi H., Reconstruction-based estimation of the scatter component in positron emission tomography. Ann Nucl Med Sci 14: 161–171 (2001).Google Scholar
  19. 19.
    Floyd C. E., Jaszczak, R. J., Greer, K. L. et al., Inverse Monte Carlo as a unified reconstruction algorithm for ECT. J Nucl Med 27: 1577–1585 (1986).Google Scholar
  20. 20.
    Buvat I., Lazaro, D. and Breton, V., “Fully 3D Monte Carlo reconstruction in SPECT: proof of concept and is that worthwhile?” Conf. Proc. of the VIIth International Meeting on Fully Three-dimensional Image Reconstruction in Radiology and Nuclear Medicine, 29 June–4 July 2003, Saint-Malo, France. Available on CD-ROM.Google Scholar
  21. 21.
    Riauka T. A., Hooper, H. R. and Gortel, Z. W., Experimental and numerical investigation of the 3D SPECT photon detection kernel for non-uniform attenuating media. Phys Med Biol 41: 1167–1189 (1996).CrossRefGoogle Scholar
  22. 22.
    Jonsson C. and Larsson, S. A., A spatially varying compton scatter correction for SPECT utilizing the integral Klein-Nishina cross section. Phys Med Biol 46: 1767–1783 (2001).CrossRefGoogle Scholar
  23. 23.
    Watson C. C., Newport, D., Casey, M. E. et al., Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging. IEEE Trans Nucl Sci 44: 90–97 (1997).CrossRefADSGoogle Scholar
  24. 24.
    Levin C. S., Dahlbom, M. and Hoffman, E. J., A Monte Carlo correction for the effect of Compton scattering in 3-D PET brain imaging. IEEE Trans Nucl Sci 42: 1181–1188 (1995).CrossRefADSGoogle Scholar
  25. 25.
    Holdsworth C. H., Levin, C. S., Janecek, M. et al., Performance analysis of an improved 3-D PET Monte Carlo simulation and scatter correction. IEEE Trans Nucl Sci 49: 83–89 (2002).CrossRefADSGoogle Scholar
  26. 26.
    Beekman F. J., de Jong, H. W. and van Geloven, S., Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation. IEEE Trans Med Imaging 21: 867–877 (2002).CrossRefGoogle Scholar
  27. 27.
    Frey E. C. and Tsui, B. M. W., A fast projector-backprojector pair modeling the asymmetric, spatially varying scatter response function for scatter compensation in SPECT imaging. IEEE Trans Nucl Sci 40: 1192–1197 (1993).CrossRefADSGoogle Scholar
  28. 28.
    Beekman F. J., Kamphuis, C. and Frey, E. C., Scatter compensation methods in 3D iterative SPECT reconstruction: a simulation study. Phys Med Biol 42: 1619–1632 (1997).CrossRefGoogle Scholar
  29. 29.
    Frey E. C. and Tsui, B. M. W., Modeling the scatter response function in inhomogeneous scattering media for SPECT. IEEE Trans Nucl Sci 41: 1585–1593 (1994).CrossRefADSGoogle Scholar
  30. 30.
    Beekman F. J., den Harder, J. M., Viergever, M. A. et al., SPECT scatter modelling in non-uniform attenuating objects. Phys Med Biol 42: 1133–1142 (1997).CrossRefGoogle Scholar
  31. 31.
    Wells R. G., Celler, A. and Harrop, R., Analytical calculation of photon distributions in SPECT projections. IEEE Trans Nucl Sci 45: 3202–3214 (1998).CrossRefADSGoogle Scholar
  32. 32.
    Beekman F. J., de Jong, H. W. and Slijpen, E. T., Efficient SPECT scatter calculation in non-uniform media using correlated Monte Carlo simulation. Phys Med Biol 44: N183–192 (1999).CrossRefGoogle Scholar
  33. 33.
    Zaidi H., Herrmann Scheurer, A. and Morel, C., An object-oriented Monte Carlo simulator for 3D positron tomographs. Comput Meth Prog Biomed 58:133–145 (1999).CrossRefGoogle Scholar
  34. 34.
    van Reenen P. C., Lotter, M. G., Heyns, A. D. et al., Quantification of the distribution of 111In-labelled platelets in organs. Eur J Nucl Med 7: 80–84 (1982).CrossRefGoogle Scholar
  35. 35.
    Jaszczak R. J., Greer, K. L., Floyd, C. E. et al., Improved SPECT quantification using compensation for scattered photons. J Nucl Med 25: 893–900 (1984).Google Scholar
  36. 36.
    Koral K. F., Clinthorne, N. H. and Rogers, W. L., Improving emissioncomputed-tomography quantification by Compton-scatter rejection through offset window. Nucl Instr Meth Phys Res A242: 610–614 (1986).ADSCrossRefGoogle Scholar
  37. 37.
    Koral K. F., Dewaraja, Y. and Lin, S., “131I tumor quantification: a new background-adaptive method” IEEE Medical Imaging Conference, Vol. 2; pp 1155–1159 (1997).Google Scholar
  38. 38.
    Koral K. F., Dewaraja, Y., Li, J. et al., Initial results for hybrid SPECT-conjugate-view tumor dosimetry in 131I-anti-B1 antibody therapy of previously untreated patients with lymphoma. J Nucl Med 41: 1579–1586 (2000).Google Scholar
  39. 39.
    Koral K. F., Dewaraja, Y., Li, J. et al., Update on hybrid conjugate-view SPECT tumor dosimetry and response in 131I-tositumomab therapy of previously untreated lymphoma patients. J Nucl Med 44: 457–464 (2003).Google Scholar
  40. 40.
    Harris C. C., Greer, K. L., Jaszczak, R. J. et al., Tc-99m attenuation coefficients in water-filled phantoms determined with gamma cameras. Med Phys 11: 681–685 (1984).CrossRefGoogle Scholar
  41. 41.
    Narita Y., Eberl, S., Iida, H. et al., Monte Carlo and experimental evaluation of accuracy and noise properties of two scatter correction methods for SPECT. Phys Med Biol 41: 2481–2496 (1996).CrossRefGoogle Scholar
  42. 42.
    Axelsson B., Msaki, P. and Israelsson, A., Subtraction of Compton-scattered photons in single-photon emission computerized tomography J Nucl Med 25: 490–494 (1984).Google Scholar
  43. 43.
    Ogawa K., Harata, Y., Ichihara, T. et al., A practical method for position-dependent Compton-scatter correction in single-photon emission CT. IEEE Trans Med Imaging 10: 408–412 (1991).CrossRefGoogle Scholar
  44. 44.
    King M. A., Hademenos, G. J. and Glick, S. J., A dual-photopeak window method for scatter correction. J Nucl Med 33: 605–612 (1992).Google Scholar
  45. 45.
    Ljungberg M., King, M. A., Hademenos, G. J. et al., Comparison of four scatter correction methods using Monte Carlo simulated source distributions. J Nucl Med 35: 143–151 (1994).Google Scholar
  46. 46.
    Buvat I., Rodriguez-Villafuerte, M., Todd-Pokropek, A. et al., Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 36: 1476–1488 (1995).Google Scholar
  47. 47.
    Msaki P., Axelsson, B., Dahl, C. M. et al., Generalized scatter correction method in SPECT using point scatter distribution functions. J Nucl Med 28: 1861–1869 (1987).Google Scholar
  48. 48.
    Ljungberg M., Msaki, P. and Strand, S.-E., Comparison of dual-window and convolution scatter correction techniques using the Monte-Carlo method Physics in Medicine and Biology 35: 1099–1110 (1990).ADSCrossRefGoogle Scholar
  49. 49.
    Floyd C. E., Jr., Jaszczak, R. J., Greer, K. L. et al., Deconvolution of Compton scatter in SPECT. J Nucl Med 26: 403–408 (1985).Google Scholar
  50. 50.
    Luo J. Q., Koral, K. F., Ljungberg, M. et al., A Monte Carlo investigation of dual-energy-window scatter correction for volume-of-interest quantification in 99mTc SPECT. Phys Med Biol 40: 181–199 (1995).CrossRefGoogle Scholar
  51. 51.
    Luo J. Q. and Koral, K. F., Background-adaptive dual-energy-window correction for volume-of-interest quantification in 99m-Tc SPECT. Nucl Instr Meth Phys Res A353: 340–343 (1994).ADSCrossRefGoogle Scholar
  52. 52.
    Green A. J., Dewhurst, S. E., Begent, R. H. et al., Accurate quantification of 131I distribution by gamma camera imaging. Eur J Nucl Med 16: 361–365 (1990).CrossRefGoogle Scholar
  53. 53.
    Koral K. F., Zasadny, K. R., Kessler, M. L. et al., CT-SPECT fusion plus conjugate views for determining dosimetry in iodine-131-monoclonal antibody therapy of lymphoma patients. J Nucl Med 35: 1714–1720 (1994).Google Scholar
  54. 54.
    Swailem F. M., Koral, K. F. and Rogers, W. L., Count-based monitoring of Anger-camera spectra-local energy shifts due to rotation. Med Phys 18: 565–567 (1991).CrossRefGoogle Scholar
  55. 55.
    Koral K. F., Luo, J. Q., Ahmad, W. et al., Changes in local energy spectra with SPECT rotation for two anger cameras. IEEE Trans Nucl Sci 42: 1114–1119 (1995).CrossRefADSGoogle Scholar
  56. 56.
    Koral K. F., Wang, X. Q., Rogers, W. L. et al., SPECT Compton-scattering correction by analysis of energy spectra. J Nucl Med 29: 195–202 (1988).Google Scholar
  57. 57.
    Wang X. and Koral, K. F., A regularized deconvolution-fitting method for Compton-scatter correction in SPECT. IEEE Trans Med Imaging 11: 351–360 (1992).CrossRefGoogle Scholar
  58. 58.
    Moore S. C., Kijewski, M. F., Muller, S. P. et al., Evaluation of scatter compensation methods by their effects on parameter estimation from SPECT projections. Med Phys 28: 278–287 (2001).CrossRefGoogle Scholar
  59. 59.
    El Fakhri G., Kijewski, M. F., Maksud, P. et al., The effects of compensation for scatter, lead x-rays, and high-energy contamination on tumor detectability and activity estimation in Ga-67 imaging. IEEE Trans Nucl Sci 50: 439–445 (2003).CrossRefADSGoogle Scholar
  60. 60.
    Ogawa K. and Nishizaki, N., Accurate scatter compensation using neural networks in radionuclide imaging. IEEE Trans Nucl Sci 40: 1020–1025 (1993).CrossRefADSGoogle Scholar
  61. 61.
    Maksud P., Fertil, B., Rica, C. et al., Artificial neural network as a tool to compensate for scatter and attenuation in radionuclide imaging. J Nucl Med 39: 735–745 (1998).Google Scholar
  62. 62.
    El Fakhri G., Moore, S. C. and Maksud, P., A new scatter compensation method for Ga-67 Imaging using artificial neural networks. IEEE Trans Nucl Sci 48: 799–804 (2001).CrossRefADSGoogle Scholar
  63. 63.
    Meikle S. R., Hutton, B. F. and Bailey, D. L., A transmission-dependent method for scatter correction in SPECT. J Nucl Med 35: 360–367 (1994).Google Scholar
  64. 64.
    Narita Y. and Iida, H., [Scatter correction in myocardial thallium SPECT: needs for optimization of energy window settings in the energy window-based scatter correction techniques] Kaku Igaku 36: 83–90 (1999).Google Scholar
  65. 65.
    Kim K. M., Varrone, A., Watabe, H. et al., Contribution of scatter and attenuation compensation to SPECT images of nonuniformly distributed brain activities. J Nucl Med 44: 512–9 (2003).Google Scholar
  66. 66.
    Welch A., Gullberg, G. T., Christian, P. E. et al., A transmission-map-based scatter correction technique for SPECT in inhomogeneous media. Med Phys 22: 1627–1635 (1995).CrossRefGoogle Scholar
  67. 67.
    Bowsher J. E. and Floyd, C. E., Jr., Treatment of Compton scattering in maximum-likelihood, expectation-maximization reconstructions of SPECT images. J Nucl Med 32: 1285–1291 (1991).Google Scholar
  68. 68.
    Koral K. F., Correction for patient Compton scattering-current status. J Nucl Med 32: 1291–1293 (1991).Google Scholar
  69. 69.
    Hudson H. M. and Larkin, R. S., Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13: 601–609 (1994).CrossRefGoogle Scholar
  70. 70.
    Werling A., Bublitz, O., Doll, J. et al., Fast implementation of the single scatter simulation algorithm and its use in iterative image reconstruction of PET data. Phys Med Biol 47: 2947–2960 (2002).CrossRefGoogle Scholar
  71. 71.
    Kamphuis C., Beekman, F. J., van Rijk, P. P. et al., Dual matrix ordered subsets reconstruction for accelerated 3D scatter compensation in single-photon emission tomography. Eur J Nucl Med 25: 8–18 (1998).CrossRefGoogle Scholar
  72. 72.
    Hutton B. F. and Baccarne, V., Efficient scatter modelling for incorporation in maximum likelihood reconstruction. Eur J Nucl Med 25: 1658–1665 (1998).CrossRefGoogle Scholar
  73. 73.
    Kadrmas D. J., Frey, E. C., Karimi, S. S. et al., Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction. Phys Med Biol 43: 857–873 (1998).CrossRefGoogle Scholar
  74. 74.
    Bailey D. L., “Quantitative procedures in 3D PET” in: The theory and practice of 3D PET, edited by B Bendriem and D W Townsend (Kluwer Academic Publishers, The Netherlands, 1998) pp 55–109.Google Scholar
  75. 75.
    Grootoonk S., Spinks, T. J., Sashin, D. et al., Correction for scatter in 3D brain PET using a dual energy window method. Phys Med Biol 41: 2757–2774 (1996).CrossRefGoogle Scholar
  76. 76.
    Bendriem B., Trebossen, R., Frouin, V. et al., “A PET scatter correction using simultaneous acquisitions with low and high lower energy thresholds” Proc. IEEE Med. Imag. Conf., San Francisco, CA, Vol. 3; pp 1779–1783 (1993).Google Scholar
  77. 77.
    Shao L., Freifelder, R. and Karp, J. S., Triple energy window scatter correction technique in PET. IEEE Trans Med Imaging 4: 641–648 (1994).CrossRefGoogle Scholar
  78. 78.
    Bentourkia M., Msaki, P., Cadorette, J. et al., Energy dependence of scatter components in multispectral PET imaging. IEEE Trans Med Imaging 14: 138–145 (1995).CrossRefGoogle Scholar
  79. 79.
    Bailey D. L. and Meikle, S. R., A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol 39: 411–424 (1994).CrossRefGoogle Scholar
  80. 80.
    Lercher M. J. and Wienhard, K., Scatter correction in 3D PET. IEEE Trans Med Imaging 13: 649–657 (1994).CrossRefGoogle Scholar
  81. 81.
    Bentourkia M. and Lecomte, R., Energy dependence of nonstationary scatter subtraction-restoration in high resolution PET. IEEE Trans Med Imaging 18: 66–73 (1999).CrossRefGoogle Scholar
  82. 82.
    Links J. L., Leal, J. P., Mueller-Gartner, H. W. et al., Improved positron emission tomography quantification by Fourier-based restoration filtering. Eur J Nucl Med 19: 925–932 (1992).Google Scholar
  83. 83.
    Cherry S. and Huang, S. C., Effects of scatter on model parameter estimates in 3D PET studies of the human brain. IEEE Trans Nucl Sci 42: 1174–1179 (1995).CrossRefADSGoogle Scholar
  84. 84.
    Ollinger J. M., Model-based scatter correction for fully 3D PET. Phys Med Biol 41: 153–176 (1996).CrossRefGoogle Scholar
  85. 85.
    Wegmann K., Adam, L.-E., Livieratos, L. et al., Investigation of the scatter contribution in single photon transmission measurements by means of Monte Carlo simulations. IEEE Trans Nucl Sci 46: 1184–1190 (1999).CrossRefADSGoogle Scholar
  86. 86.
    Celler A., Axen, D., Togane, D. et al., Investigation of scatter in SPECT transmission studies. IEEE Trans Nucl Sci 47: 1251–1257 (2000).CrossRefADSGoogle Scholar
  87. 87.
    Wollenweber S. D., Parameterization of a model-based 3-D PET scatter correction. IEEE Trans Nucl Sci 49: 722–727 (2002).CrossRefADSGoogle Scholar
  88. 88.
    Watson C. C., New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci 47: 1587–1594 (2000).CrossRefADSGoogle Scholar
  89. 89.
    Zaidi H., Montandon, M.-L. and Slosman, D. O., Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 30: 937–948 (2003).CrossRefGoogle Scholar
  90. 90.
    Zaidi H., Comparative evaluation of scatter correction techniques in 3D positron emission tomography. Eur J Nucl Med 27: 1813–1826 (2000).CrossRefGoogle Scholar
  91. 91.
    Pan T. S. and Yagle, A. E., Numerical study of multigrid implementations of some iterative image reconstruction algorithms. IEEE Trans Med Imaging 10: 572–588 (1991).CrossRefGoogle Scholar
  92. 92.
    Sankaran S., Frey, E. C., Gilland, K. L. et al., Optimum compensation method and filter cutoff frequency in myocardial SPECT: a human observer study. J Nucl Med 43: 432–438 (2002).Google Scholar
  93. 93.
    Friston K., Holmes, A., Worsley, K. et al., Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping 2: 189–210 (1995).CrossRefGoogle Scholar
  94. 94.
    Montandon M.-L., Slosman, D. O. and Zaidi, H., Assessment of the impact of model-based scatter correction on 18F-[FDG] 3D brain PET in healthy subjects using statistical parametric mapping. Neuroimage 20: 1848–1856 (2003).CrossRefGoogle Scholar
  95. 95.
    Townsend D., Price, J., Mintun, M. et al., “Scatter correction for brain receptor quantitation in 3D PET” in: Quantification of Brain Function Using PET, edited by Myers R, Cunningham V, Bailey DL and Jones T (Academic Press, San Diego, CA 1996), pp 76–81.CrossRefGoogle Scholar
  96. 96.
    Kinahan P. E. and Karp, J. S., Figures of merit for comparing reconstruction algorithms with a volume-imaging PET scanner. Phys Med Biol 39: 631–642 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • H. Zaidi
    • 1
  • K. F. Koral
    • 2
  1. 1.Division of Nuclear MedicineGeneva University HospitalGenevaSwitzerland
  2. 2.Dept. of RadiologyUniversity of Michigan Medical CenterAnn ArborUSA

Personalised recommendations