Iterative Reconstruction Methods

  • B. F. Hutton
  • J. Nuyts
  • H. Zaidi


Iterative Reconstruction Filter Back Projection Expectation Maximization Algorithm Algebraic Reconstruction Technique Iterative Reconstruction Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lalush D. S., “Iterative image reconstruction” in: Emission Tomography: The Fundamentals of PET and SPECT. edited by M Wernick and J Aarsvold Academic Press, San Diego, (2004) in press Google Scholar
  2. 2.
    Fessler J. A., “Statistical image reconstruction methods for transmission tomography” in: Handbook of Medical Imaging, edited by M. Sonka and J. M. Fitzpatrick SPIE, Bellingham, (2000) pp 11–70.Google Scholar
  3. 3.
    Lewitt R. M. and Matej, S., Overview of methods for image reconstruction from projections in emission computed tomography. Proceedings of the IEEE 91: 1588–1611 (2003).CrossRefGoogle Scholar
  4. 4.
    Herman G. T. and Meyer, L. B., Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans Med Imaging 12: 600–609 (1993).CrossRefGoogle Scholar
  5. 5.
    Bender R., Gordon, R. and Herman, G. T., Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J Theor Biol 29: 471–482 (1970).CrossRefGoogle Scholar
  6. 6.
    Lu H. H., Chen, C. M. and Yang, I. H., Cross-reference weighted least square estimates for positron emission tomography. IEEE Trans Med Imaging 17: 11–8 (1998).CrossRefGoogle Scholar
  7. 7.
    Guan H., Gordon, R. and Zhu, Y., Combining various projection access schemes with the algebraic reconstruction technique for low-contrast detection in computed tomography. Phys Med Biol 43: 2413–2421 (1998).CrossRefGoogle Scholar
  8. 8.
    Byrne C. L., Block-iterative methods for image reconstruction from projections. IEEE Trans Image Proc 5: 792–794 (1996).CrossRefADSGoogle Scholar
  9. 9.
    Barrett H. H., Wilson, D. W. and Tsui, B. M. W., Noise properties of the EM algorithm. I. Theory. Phys Med Biol 39: 833–846 (1994).CrossRefGoogle Scholar
  10. 10.
    Sauer K. and Bouman, C., A local update strategy for iterative reconstruction from projections. IEEE Trans Sign Proc 41: 534–548 (1993).zbMATHCrossRefADSGoogle Scholar
  11. 11.
    Fessler J. A., Penalized weighted least-squares image reconstruction for positron emission tomography. IEEE Trans Med Imaging 13: 290290–300 (1994).CrossRefGoogle Scholar
  12. 12.
    Comtat C., Kinahan, P. E., Defrise, M. et al., Fast reconstruction of 3D PET data with accurate statistical modeling. IEEE Trans Nucl Sci 45: 1083–1089 (1998).CrossRefADSGoogle Scholar
  13. 13.
    Meikle S. R., Fulton, R. R., Eberl, S. et al., An investigation of coded aperture imaging for small animal SPECT. IEEE Trans Nucl Sci 48: 816–821 (2001).CrossRefADSGoogle Scholar
  14. 14.
    Kaufman L., Maximum likelihood, least squares, and penalized least squares for PET. IEEE Trans Med Imaging 12: 200–214 (1993).CrossRefGoogle Scholar
  15. 15.
    Chinn G. and Huang, S. C., A general class of preconditioners for statistical iterative reconstruction of emission computed tomography. IEEE Trans Med Imaging 16: 11–10 (1997).CrossRefGoogle Scholar
  16. 16.
    Dempster A. P., Laird, N. M. and Rubin, D. B., Maximum likelihood from incomplete data via the EM algorithm. J Royal Stat Soc B 38: 11–38 (1977).Google Scholar
  17. 17.
    Shepp L. A. and Vardi, Y., Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag 1: 113–122 (1982).CrossRefGoogle Scholar
  18. 18.
    Lange K. and Fessler, J. A., Globally convergent algorithms for maximum a posteriori transmission tomography. IEEE Trans Imag Proc 4: 1430–1438 (1995).CrossRefADSGoogle Scholar
  19. 19.
    Miller M. I., Snyder, D. L. and Miller, T. R., Maximum likelihood reconstruction for single-photon emission computed tomography. IEEE Trans Nucl Sci 32: 769769–778 (1985).Google Scholar
  20. 20.
    Wilson D. W., Tsui, B. M. W. and Barrett, H. H., Noise properties of the EM algorithm. II. Monte Carlo simulations Phys Med Biol 39: 847–871 (1994).CrossRefGoogle Scholar
  21. 21.
    Beekman F. J., Slijpen, E. T. and Niessen, W. J., Selection of task-dependent diffusion filters for the post-processing of SPECT images. Phys Med Biol 43: 1713–1730 (1998).CrossRefGoogle Scholar
  22. 22.
    Geman S. and McClure, D. E., Statistical methods for tomographic image reconstruction. Bull Int Stat Inst 52-4: 55–21 (1987).Google Scholar
  23. 23.
    Mumcuoglu E. U., Leahy, R. M. and Cherry, S. R., Bayesian reconstruction of PET images: methodology and performance analysis. Phys Med Biol 41: 1777–1807 (1996).CrossRefGoogle Scholar
  24. 24.
    de Pierro A. R., On the convergence of an EM-type algorithm for penalized likelihood estimation in emission tomography. IEEE Trans Med Imaging 14: 762–765 (1995).CrossRefGoogle Scholar
  25. 25.
    Nuyts J., Beque, D., Dupont, P. et al., A concave prior penalizing relative differences for maximum-a-posteriori reconstruction in emission tomography. IEEE Trans Nucl Sci 49: 56–60 (2002).CrossRefADSGoogle Scholar
  26. 26.
    Green P. J., Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 9: 84–93 (1990).CrossRefGoogle Scholar
  27. 27.
    Ahn S. and Fessler, J. A., Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms. IEEE Trans Med Imaging 22: 613–626 (2003).CrossRefGoogle Scholar
  28. 28.
    Slijpen E. T. P. and Beekman, F. J., Comparison of post-filtering and filtering between iterations for SPECT reconstruction. IEEE Trans Nucl Sci 46: 2233–2238 (1999).CrossRefADSGoogle Scholar
  29. 29.
    Nuyts J., On estimating the variance of smoothed MLEM images IEEE Trans Nucl Sci 49: 714–721 (2002).CrossRefADSGoogle Scholar
  30. 30.
    Silverman B. W., Jones, M. C., Wilson, J. D. et al., A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography. J R Statist Soc B 52: 271–324 (1990).zbMATHMathSciNetGoogle Scholar
  31. 31.
    Mustafovic S., Thielemans, K., Hogg, D. et al., “Object dependency of resolution and convergence rate in OSEM with filtering” Nuclear Science Symposium Conference Record, 2001 IEEE, Vol. 3; pp 1786–1790 (2001).Google Scholar
  32. 32.
    Fessler J. A. and Rogers, W. L., Spatial resolution properties of penalizedlikelihood image reconstruction: space-invariant tomographs. IEEE Trans Imag Proc 5: 1346–1358 (1996).CrossRefADSGoogle Scholar
  33. 33.
    Nuyts J. and Fessler, J. A., A penalized-likelihood image reconstruction method for emission tomography, compared to postsmoothed maximum-likelihood with matched spatial resolution. IEEE Trans Med Imaging 22: 1042–1052 (2003).CrossRefGoogle Scholar
  34. 34.
    Stayman J. W. and Fessler, J. A., Compensation for nonuniform resolution using penalized-likelihood reconstruction in space-variant imaging systems. IEEE Trans Med Imaging 23: 269–284 (2004).CrossRefGoogle Scholar
  35. 35.
    Johnson V. E., Wong, W. H., Hu, X. et al., Image restoration using Gibbs priors: boundary modeling, treatment of blurring, and selection of hyperparameter. IEEE Trans Pattern Anal Machine Intell 13: 413–425 (1991).CrossRefGoogle Scholar
  36. 36.
    Gindi G., Lee, M., Rangarajan, A. et al., Bayesian reconstruction of functional images using anatomical information as priors. IEEE Trans Med Imaging 12: 670–680 (1993).CrossRefGoogle Scholar
  37. 37.
    Ardekani B. A., Braun, M., Hutton, B. F. et al., Minimum cross-entropy reconstruction of PET images using prior anatomical information. Phys Med Biol 41: 2497–2517 (1996).CrossRefGoogle Scholar
  38. 38.
    Som S., Hutton, B. F. and Braun, M., Properties of minimum cross-entropy reconstruction of emission tomography with anatomically based prior. IEEE Trans Nucl Sci 45: 3014–3021 (1998).CrossRefADSGoogle Scholar
  39. 39.
    Rangarajan A., Hsiao, I.-T. and Gindi, G., A bayesian joint mixture framework for the integration of anatomical information in functional image reconstruction. J Mat Imag Vision 12: 119–217 (2000).Google Scholar
  40. 40.
    Comtat C., Kinahan, P. E., Fessler, J. A. et al., Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels. Phys Med Biol 47: 11–20 (2002).CrossRefGoogle Scholar
  41. 41.
    Zaidi H., Montandon, M.-L. and Slosman, D. O., Magnetic resonance imaging-guided attenuation correction in 3D brain positron emission tomography. Med Phys 30: 937–948 (2003).CrossRefGoogle Scholar
  42. 42.
    Sastry S. and Carson, R. E., Multimodality Bayesian algorithm for image reconstruction in positron emission tomography: a tissue composition model. IEEE Trans Med Imaging 16: 750–761 (1997).CrossRefGoogle Scholar
  43. 43.
    Baete K., Nuyts, J., Van Paesschen, W. et al., “Anatomical based FDG-PET reconstruction for the detection of hypometabolic regions in epilepsy” Nuclear Science Symposium Conference Record, 2002 IEEE, Vol. 3; pp 1481–1485 (2002).Google Scholar
  44. 44.
    Defrise M., Kinahan, P. E., Townsend, D. W. et al., Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 16: 145–158 (1997).CrossRefGoogle Scholar
  45. 45.
    Alenius S. and Ruotsalainen, U., Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med 24: 258–265 (1997).Google Scholar
  46. 46.
    Alenius S. and Ruotsalainen, U., Generalization of median root prior reconstruction. IEEE Trans Med Imaging 21: 1413–1420 (2002).CrossRefGoogle Scholar
  47. 47.
    Hsiao I. T., Rangarajan, A. and Gindi, G., A new convex edge-preserving median prior with applications to tomography. IEEE Trans Med Imaging 22: 580–585 (2003).CrossRefGoogle Scholar
  48. 48.
    Hudson H. M. and Larkin, R. S., Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13: 601–609 (1994).CrossRefGoogle Scholar
  49. 49.
    Hutton B. F., Hudson, H. M. and Beekman, F. J., A clinical perspective of accelerated statistical reconstruction. Eur J Nucl Med 24: 797–808 (1997).Google Scholar
  50. 50.
    Byrne C. L., Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative methods. IEEE Trans Imag Proc 7: 100–109 (1998).zbMATHMathSciNetCrossRefADSGoogle Scholar
  51. 51.
    Browne J. and de Pierro, A. B., A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imaging 15: 687–699 (1996).CrossRefGoogle Scholar
  52. 52.
    Tanaka E. and Kudo, H., Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol 48: 1405–1422 (2003).CrossRefGoogle Scholar
  53. 53.
    Schmidlin P., Bellemann, M. E. and Brix, G., Subsets and overrelaxation in iterative image reconstruction. Phys Med Biol 44: 1385–1396 (1999).CrossRefGoogle Scholar
  54. 54.
    Lalush D. S., Frey, E. C. and Tsui, B. M., Fast maximum entropy approximation in SPECT using the RBI-MAP algorithm. IEEE Trans Med Imaging 19: 286–294 (2000).CrossRefGoogle Scholar
  55. 55.
    de Pierro A. R. and Yamagishi, M. E. B., Fast EM-like methods for maximum “a posteriori” estimates in emission tomography. IEEE Trans Med Imaging 20: 280–288 (2001).CrossRefGoogle Scholar
  56. 56.
    Leahy R. and Byrne, C. L., Recent developments in iterative image reconstruction for PET and SPECT. IEEE Trans Med Imaging 19: 257–260 (2000).CrossRefGoogle Scholar
  57. 57.
    Lange K. and Carson, R., EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 8: 306–316 (1984).Google Scholar
  58. 58.
    Manglos S. H., Gagne, G. M., Krol, A. et al., Transmission maximum-likelihood reconstruction with ordered subsets for cone beam CT. Phys Med Biol 40: 1225–1241 (1995).CrossRefGoogle Scholar
  59. 59.
    Mumcuoglu E. U., Leahy, R., Cherry, S. R. et al., Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images. IEEE Trans Med Imaging 13: 687–701 (1994).CrossRefGoogle Scholar
  60. 60.
    Fessler J. A., Ficaro, E. P., Clinthorne, N. H. et al., Grouped-coordinate ascent algorithms for penalized-likelihood transmission image reconstruction. IEEE Trans Med Imaging 16: 166–175 (1997).CrossRefGoogle Scholar
  61. 61.
    Nuyts J., Dupont, P., Stroobants, S. et al., Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging 18: 393–403 (1999).CrossRefGoogle Scholar
  62. 62.
    Lalush D. S. and Tsui, B. M., Performance of ordered-subset reconstruction algorithms under conditions of extreme attenuation and truncation in myocardial SPECT. J Nucl Med 41: 737–744 (2000).Google Scholar
  63. 63.
    Meikle S. R., Dahlbom, M. and Cherry, S. R., Attenuation correction using count-limited transmission data in positron emission tomography. J Nucl Med 34: 143–150 (1993).Google Scholar
  64. 64.
    Tai Y.-C., Lin, K.-P., Dahlbom, M. et al., A hybrid attenuation correction technique to compensate for lung density in 3-D total body PET. IEEE Trans Nucl Sci 43: 323–330 (1996).CrossRefADSGoogle Scholar
  65. 65.
    Xu M., Cutler, P. and Luk, W., An adaptive local threshold segmented attenuation correction method for whole-body PET imaging. IEEE Trans Nucl Sci 43: 331–336 (1996).CrossRefADSGoogle Scholar
  66. 66.
    Zaidi H., Diaz-Gomez, M., Boudraa, A. E. et al., Fuzzy clustering-based segmented attenuation correction in whole-body PET imaging. Phys Med Biol 47: 1143–1160 (2002).CrossRefGoogle Scholar
  67. 67.
    Yavuz M. and Fessler, J. A., Statistical image reconstruction methods for randoms-precorrected PET scans. Med Image Anal 2: 369–378 (1998).CrossRefGoogle Scholar
  68. 68.
    Nuyts J., Michel, C. and Dupont, P., Maximum-likelihood expectation-maximization reconstruction of sinograms with arbitrary noise distribution using NEC-transformations. IEEE Trans Med Imaging 20: 365–375 (2001).CrossRefGoogle Scholar
  69. 69.
    Tsui B. M., Frey, E. C., Zhao, X. et al., The importance and implementation of accurate 3D compensation methods for quantitative SPECT. Phys Med Biol 39: 509–530 (1994).CrossRefGoogle Scholar
  70. 70.
    Hutton B. F. and Lau, Y. H., Application of distance-dependent resolution compensation and post-reconstruction filtering for myocardial SPECT. Phys Med Biol 43: 1679–1693 (1998).CrossRefGoogle Scholar
  71. 71.
    Beekman F. J., Kamphuis, C. and Viergever, M. A., Improved SPECT quantitation using fully three-dimensional iterative spatially variant scatter response compensation. IEEE Trans Med Imaging 15: 491–499 (1996).CrossRefGoogle Scholar
  72. 72.
    Frey E. C. and Tsui, B. M. W., A practical method for incorporating scatter in a projector-backprojector for accurate scatter compensation in SPECT. IEEE Trans Nucl Sci 40: 1107–1116 (1993).CrossRefADSGoogle Scholar
  73. 73.
    Beekman F. J., de Jong, H. W. and van Geloven, S., Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation. IEEE Trans Med Imaging 21: 867–877 (2002).CrossRefGoogle Scholar
  74. 74.
    Bowsher J. E. and Floyd, C. E., Jr., Treatment of Compton scattering in maximum-likelihood, expectation-maximization reconstructions of SPECT images. J Nucl Med 32: 1285–1291 (1991).Google Scholar
  75. 75.
    de Jong H. W., Beekman, F. J., Viergever, M. A. et al., Simultaneous (99m)Tc/(201)Tl dual-isotope SPET with Monte Carlo-based down-scatter correction. Eur J Nucl Med Mol Imaging 29: 1063–1071 (2002).CrossRefGoogle Scholar
  76. 76.
    Hudson H. M., Hutton, B. F., Larkin, R. S. et al., Investigation of multiple energy reconstruction in SPECT using MLEM. J Nucl Med 37: 171P (abstract) (1996).Google Scholar
  77. 77.
    Carson R. E. and Lange, K., The EM parametric image reconstruction algorithm. J Am Statist Assoc 80: 20–22 (1985).CrossRefGoogle Scholar
  78. 78.
    Lalush D. S. and Tsui, B. M., Block-iterative techniques for fast 4D reconstruction using a priori motion models in gated cardiac SPECT. Phys Med Biol 43: 875–886 (1998).CrossRefGoogle Scholar
  79. 79.
    Matej S. and Browne, J. A., “Performance of a fast maximum likelihood algorithm for fully 3D PET reconstruction” in: Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, edited by P. Grangeat and J-L. Amans Kluwer Academic Publishers, Dordrecht, (1996) pp 297–315.Google Scholar
  80. 80.
    Liu X., Comtat, C., Michel, C. et al., Comparison of 3-D reconstruction with 3D-OSEM and with FORE+OSEM for PET. IEEE Trans Med Imaging 20: 804–814 (2001).CrossRefGoogle Scholar
  81. 81.
    Fulton R. R., Hutton, B. F., Braun, M. et al., Use of 3D reconstruction to correct for patient motion in SPECT. Phys Med Biol 39: 563–574 (1994).CrossRefGoogle Scholar
  82. 82.
    Hutton B. F., Kyme, A. Z., Lau, Y. H. et al., A hybrid 3-D reconstruction/registration algorithm for correction of head motion in emission tomography. IEEE Trans Nucl Sci 49: 188–194 (2002).CrossRefADSGoogle Scholar
  83. 83.
    Bloomfield P. M., Spinks, T. J., Reed, J. et al., The design and implementation of a motion correction scheme for neurological PET. Phys Med Biol 48: 959–978 (2003).CrossRefGoogle Scholar
  84. 84.
    Barrett H. H., White, T. and Parra, L. C., List-mode likelihood. J Opt Soc Am A 14: 2914–2923 (1997).ADSCrossRefGoogle Scholar
  85. 85.
    Reader A. J., Erlandsson, K., Flower, M. A. et al., Fast accurate iterative reconstruction for low-statistics positron volume imaging. Phys Med Biol 43: 835–846 (1998).CrossRefGoogle Scholar
  86. 86.
    Matej S. and Lewitt, R. M., Practical considerations for 3-D image reconstruction using spherically symmetric volume elements. IEEE Trans Med Imaging 15: 68–78 (1996).CrossRefGoogle Scholar
  87. 87.
    Swensson R. G., Unified measurement of observer performance in detecting and localizing target objects on images. Med Phys 23: 1709–1725 (1996).CrossRefGoogle Scholar
  88. 88.
    Boellaard R., van_Lingen, A. and Lammertsma, A. A., Experimental and clinical evaluation of iterative reconstruction (OSEM) in dynamic PET: quantitative characteristics and effects on kinetic modeling. J Nucl Med 42: 808–817 (2001).Google Scholar
  89. 89.
    Montandon M.-L., Slosman, D. O. and Zaidi, H., Assessment of the impact of model-based scatter correction on 18F-[FDG] 3D brain PET in healthy subjects using statistical parametric mapping. Neuroimage 20: 1848–1856 (2003).CrossRefGoogle Scholar
  90. 90.
    Mesina C. T., Boellaard, R., Jongbloed, G. et al., Experimental evaluation of iterative reconstruction versus filtered backprojection for 3D [15O]water PET activation studies using statistical parametric mapping analysis. Neuroimage 1: 1170–1179 (2003).CrossRefGoogle Scholar
  91. 91.
    Beekman F. J. and Viergever, M.A., Fast SPECT simulation including object shape dependent scatter. IEEE Trans Med Imag 14: 271–282 (1995).CrossRefGoogle Scholar
  92. 92.
    Ljungberg M., Strand, S.-E. and King, M. A., “Monte Carlo calculations in nuclear medicine: Applications in diagnostic imaging” (Institute of Physics Publishing, Bristol, 1998).Google Scholar
  93. 93.
    Zaidi H. and Sgouros, G., “Therapeutic applications of Monte Carlo calculations in nuclear medicine” (Institute of Physics Publishing, Bristol, 2002).Google Scholar
  94. 94.
    Barrett H. H., Denny, J. L., Wagner, R. F. et al., Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance. J Opt Soc Am A 12: 834–852 (1995).ADSCrossRefGoogle Scholar
  95. 95.
    Metz C. E., ROC methodology in radiologic imaging. Invest Radiol 21: 720–733 (1986).Google Scholar
  96. 96.
    Barrett H. H., Abbey, C. K. and Clarkson, E., Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood-generating functions. J Opt Soc Am A Opt Image Sci Vis 15: 1520–1535 (1998).ADSGoogle Scholar
  97. 97.
    Gifford H. C., King, M. A., de_Vries, D. J. et al., Channelized hotelling and human observer correlation for lesion detection in hepatic SPECT imaging. J Nucl Med 41: 514–521 (2000).Google Scholar
  98. 98.
    Lartizien C., Kinahan, P. E., Swensson, R. et al., Evaluating image reconstruction methods for tumor detection in 3-dimensional whole-body PET oncology imaging. J Nucl Med 44: 276–290 (2003).Google Scholar
  99. 99.
    Lonneux M., Borbath, I., Bol, A. et al., Attenuation correction in whole-body FDG oncological studies: the role of statistical reconstruction. Eur J Nucl Med 26: 591591–598 (1999).CrossRefGoogle Scholar
  100. 100.
    Blocklet D., Seret, A., Popa, N. et al., Maximum-likelihood reconstruction with ordered subsets in bone SPECT. J Nucl Med 40: 19781978–1984 (1999).Google Scholar
  101. 101.
    Hatton R., Hutton, B. F. and Angelides, S., Improved tolerance to missing data in myocardial perfusion SPECT using OSEM reconstruction. Eur J Nucl Med Mol Imaging 31: 857–861 (2004).CrossRefGoogle Scholar
  102. 102.
    Riddell C., Carson, R. E., Carrasquillo, J. A. et al., Noise reduction in oncology FDG PET images by iterative reconstruction: a quantitative assessment. J Nucl Med 42: 1316–1323 (2001).Google Scholar
  103. 103.
    Fulton R. R., Meikle, S. R., Eberl, S. et al., Signal to noise ratio in neurological FDG PET: Comparison of FBP and OS-EM reconstruction algorithms. J Nucl Med 37: 220P (abstract) (1996).Google Scholar
  104. 104.
    Visvikis D., Cheze_LeRest, C., Costa, D. C. et al., Influence of OSEM and segmented attenuation correction in the calculation of standardised uptake values for [18F]FDG PET. Eur J Nucl Med 28: 1326–1335 (2001).CrossRefGoogle Scholar
  105. 105.
    Iida H. and Eberl, S., Quantitative assessment of regional myocardial blood flow with thallium-201 and SPECT. J Nucl Cardiol 5: 313–331 (1998).CrossRefGoogle Scholar
  106. 106.
    Friston K., Holmes, A., Worsley, K. et al., Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping 2: 189–210 (1995).CrossRefGoogle Scholar
  107. 107.
    Braem A., Chamizo Llatas, M., Chesi, E. et al., Feasibility of a novel design of high-resolution parallax-free Compton enhanced PET scanner dedicated to brain research. Phys Med Biol 49: 2547–2562 (2004).CrossRefGoogle Scholar
  108. 108.
    Buvat I., Lazaro, D. and Breton, V., “Fully 3D Monte Carlo reconstruction in SPECT: proof of concept and is that worthwhile?” Conf. Proc. of the VIIth International Meeting on Fully Three-dimensional Image Reconstruction in Radiology and Nuclear Medicine, 29 June–4 July 2003, Saint-Malo, France. Available on CD-ROM.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • B. F. Hutton
    • 2
    • 3
  • J. Nuyts
    • 1
  • H. Zaidi
    • 4
  1. 1.Nuclear Medicine Department, U.Z. GasthuisbergKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Institute of Nuclear MedicineUniversity College LondonLondonUK
  3. 3.Centre for Medical Radiation PhysicsUniversity of WollongongAustalia
  4. 4.Division of Nuclear MedicineGeneva University HospitalGeneva

Personalised recommendations