Dual-Modality Imaging: More Than the Sum of its Components

  • B. H. Hasegawa
  • H. Zaidi


Positron Emission Tomography Attenuation Correction Compute Tomography Data Radionuclide Imaging Photon Attenuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hasegawa B. H., Iwata, K., Wong, K. H. et al., Dual-modality imaging of function and physiology. Acad Radiol 9:1305–1321 (2002).Google Scholar
  2. 2.
    Schiepers C. and Hoh, C. K., Positron emission tomography as a diagnostic tool in oncology. Eur Radiol 8: 1481–1494 (1998).Google Scholar
  3. 3.
    Zaidi H., Quantitative SPECT: Recent developments in detector response, attenuation and scatter correction techniques. Phys Med 12: 101–117 (1996).Google Scholar
  4. 4.
    Larsson A., Johansson, L., Sundstrom, T. et al., A method for attenuation and scatter correction of brain SPECT based on computed tomography images. Nucl Med Comm 24: 411–420 (2003).Google Scholar
  5. 5.
    Huang S. C., Hoffman, E. J., Phelps, M. E. et al., Quantitation in positron emission computed tomography. 1. Effects of inaccurate attenuation correction J Comput Assist Tomogr 3: 804–814 (1979).Google Scholar
  6. 6.
    Hoffman E. J., Huang, S. C. and Phelps, M. E., Quantitation in positron emission computed tomography. I. Effect of object size. J Comput Assist Tomogr 3: 299–308 (1979).Google Scholar
  7. 7.
    Tsui B., Frey, E., Zhao, X. et al., The importance and implementation of accurate 3D compensation methods for quantitative SPECT. Phys Med Biol 39: 509–530 (1994).Google Scholar
  8. 8.
    Tsui B. M. W., Zhao, X., Frey, E. et al., Quantitative single-photon emission computed tomography: Basics and clinical considerations. Semin Nucl Med 24: 38–65 (1994).Google Scholar
  9. 9.
    Rosenthal M. S., Cullom, J., Hawkins, W. et al., Quantitative SPECT imaging. A review and recommendations by the focus committee of the Society of Nuclear Medicine computer and instrumentation council. J Nucl Med 36: 1489–1513 (1995).Google Scholar
  10. 10.
    Zaidi H. and Hasegawa, B. H., Determination of the attenuation map in emission tomography. J Nucl Med 44: 291–315 (2003).Google Scholar
  11. 11.
    Shreve P. D., Adding structure to function J Nucl Med 41: 1380–1382 (2000).Google Scholar
  12. 12.
    Schillaci O. and Simonetti, G., Fusion imaging in nuclear medicine-Applications of dual-modality systems in oncology. Cancer Biother Radiopharm 19: 1–10 (2004).Google Scholar
  13. 13.
    Aizer-Dannon A., Bar-Am, A., Ron, I. G. et al., Fused functional-anatomic images of metastatic cancer of cervix obtained by a combined gamma camera and an x-ray tube hybrid system with an illustrative case and review of the F-18-fluorodeoxyglucose literature. Gynecol Oncol 90: 453–457 (2003).Google Scholar
  14. 14.
    Pfannenberg A. C., Eschmann, S. M., Horger, M. et al., Benefit of anatomical-functional image fusion in the diagnostic work-up of neuroendocrine neoplasms. Eur J Nucl Med Mol Imaging 30: 835–843 (2003).Google Scholar
  15. 15.
    Maintz J. B. and Viergever, M. A., A survey of medical image registration. Med Image Anal 2: 1–36 (1998).Google Scholar
  16. 16.
    Hutton B. F. and Braun, M., Software for image registration: algorithms, accuracy, efficacy. Semin Nucl Med 33: 180–192 (2003).Google Scholar
  17. 17.
    Slomka P. J., Software approach to merging molecular with anatomic information. J Nucl Med 45Suppl 1: 36S–45S (2004).Google Scholar
  18. 18.
    Pellizzari C., Chen, G. T. Y., Spelbring, D. R. et al., Accurate three-dimensional registration of CT, PET, and/or MR images of the brain. J Comput Assist Tomogr 13: 20–26 (1989).Google Scholar
  19. 19.
    Pietrzyk U., Herholz, K., Fink, G. et al., An interactive technique for three-dimensional image registration: validation for PET, SPECT, MRI and CT brain studies. J Nucl Med 35: 2011–2018 (1994).Google Scholar
  20. 20.
    Visvikis D. and Ell, P. J., Impact of techology on the utilisation of positron emission tomography in lymphoma: current and future perspectives. Eur J Nucl Med Mol Imaging 30: S106–S116 (2003).Google Scholar
  21. 21.
    Da Silva A. J., Tang, H. R., Wong, K. H. et al., Absolute quantification of regional myocardial uptake of 99mTc-sestamibi with SPECT: experimental validation in a porcine model. J Nucl Med 42: 772–779 (2001).Google Scholar
  22. 22.
    Blankespoor S. C., Wu, X., Kalki, K. et al., Attenuation correction of SPECT using x-ray CT on an emission-transmission CT system: Myocardial perfusion assessment. IEEE Trans Nucl Sci 43: 2263–2274 (1996).ADSGoogle Scholar
  23. 23.
    Hasegawa B. H., Gingold, E. L., Reilly, S. M. et al., Description of a simultaneous emission-transmission CT system. Proc SPIE Vol. 1231; pp 50–60 (1990).ADSGoogle Scholar
  24. 24.
    Hasegawa B. H., Tang, H. R., Da Silva, A. J. et al., Dual-modality imaging. Nucl Instr Meth Phys Res A 471: 140–144 (2000).ADSGoogle Scholar
  25. 25.
    Hasegawa B. H., Wong, K. H., Iwata, K. et al., Dual-modality imaging of cancer with SPECT/CT. Technol Cancer Res Treat 1: 449–458 (2002).Google Scholar
  26. 26.
    Lang T. F., Hasegawa, B. H., Liew, S. C. et al., Description of a prototype emission-transmission CT imaging system. J Nucl Med 33: 1881–1887 (1992).Google Scholar
  27. 27.
    Beyer T., Kinahan, P. E., Townsend, D. W. et al., “The use of x-ray CT for attenuation correction of PET data” IEEE Nuclear Science Symposium 1577 (1994).Google Scholar
  28. 28.
    Beyer T., Townsend, D. W., Brun, T. et al., A combined PET/CT scanner for clinical oncology. J Nucl Med 41: 1369–1379 (2000).Google Scholar
  29. 29.
    Townsend D., Kinahan, P. and Beyer, T., Attenuation correction for a combined 3D PET/CT scanner. Physica Medica 12:(Suppl 1) 43–48 (1996).Google Scholar
  30. 30.
    Townsend D. W., Beyer, T., Kinahan, P. E. et al., “The SMART scanner: a combined PET/CT tomograph for clinical oncology” IEEE Nuclear Science Symposium and Medical Imaging Conference, Vol. 2; pp 1170–1174 (1998).Google Scholar
  31. 31.
    Townsend D. W., A combined PET/CT scanner: the choices. J Nucl Med 42: 533–534 (2001).Google Scholar
  32. 32.
    Townsend D. W. and Cherry, S. R., Combining anatomy and function: the path to true image fusion. Eur Radiol 11: 1968–1974 (2001).Google Scholar
  33. 33.
    Townsend D. W. and Beyer, T., A combined PET/CT scanner: the path to true image fusion. Brit J Radiol 75: S24–S30 (2002).Google Scholar
  34. 34.
    Townsend D. W., Beyer, T. and Blodgett, T. M., PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med 33: 193–204 (2003).Google Scholar
  35. 35.
    Townsend D. W., Carney, J. P., Yap, J. T. et al., PET/CT today and tomorrow. J Nucl Med 45:Suppl 1 4S–14S (2004).Google Scholar
  36. 36.
    Vogel W. V., Oyen, W. J. G., Barentsz, J. O. et al., PET/CT: Panacea, redundancy, or something in between? J Nucl Med 45: 15S–24S (2004).Google Scholar
  37. 37.
    Phelps M. E., PET: The merging of biology and imaging into molecular imaging J Nucl Med 41: 661–681 (2000).Google Scholar
  38. 38.
    Wahl R. L., Why nearly all PET of abdominal and pelvic cancers will be performed as PET/CT. J Nucl Med 45: 82S–95S (2004).Google Scholar
  39. 39.
    Goerres G. W., von Schulthess, G. K. and Steinert, H. C., Why most PET of lung and head-and-neck cancer will be PET/CT. J Nucl Med 45: 66S–71S (2004).Google Scholar
  40. 40.
    Even-Sapir E., Keidar, Z., Sachs, J. et al., The new technology of combined transmission and emission tomography in evaluation of endocrine neoplasms. J Nucl Med 42: 998–1004 (2001).Google Scholar
  41. 41.
    Israel O., Keidar, Z., Iosilevsky, G. et al., The fusion of anatomic and physiologic imaging in the management of patients with cancer. Semin Nucl Med 31: 191–205 (2001).Google Scholar
  42. 42.
    Tang H. R., “A Combined X-ray CT-Scintillation Camera System for Measuring Radionuclide Uptake in Tumors,” Ph.D Thesis, University of California, 1998.Google Scholar
  43. 43.
    Kinahan P. E., Townsend, D. W., Beyer, T. et al., Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25: 2046–2053 (1998).Google Scholar
  44. 44.
    Kinahan P. E., Hasegawa, B. H. and Beyer, T., X-ray-based attenuation correction for position tomography/computed tomography scanners. Semin Nucl Med 33: 166–179 (2003).Google Scholar
  45. 45.
    Mayneord W. V., The radiology of the human body with radioactive isotopes. Brit J Radiol 25: 517–525 (1952).Google Scholar
  46. 46.
    Mayneord W. V., Radiological research. Brit J Radiol 27: 309–317 (1954).Google Scholar
  47. 47.
    Mayneord W. V., Evans, H. D. and Newberry, S. P., An instrument for the formation of visual images of ionizing radiations. J Scient Instruments 32: 45–50 (1955).ADSGoogle Scholar
  48. 48.
    Anger H. O., Whole-body scanner Mark II. J Nucl Med 7: 331–332 (1966).Google Scholar
  49. 49.
    Anger H. O. and McRae, J., Transmission scintiphotography. J Nucl Med 9: 267–269 (1968).Google Scholar
  50. 50.
    Cameron J. R. and Sorenson, J., Measurement of bone mineral in vivo: an improved method. Science 142: 230–232 (1963).ADSGoogle Scholar
  51. 51.
    Kuhl D. E., Hale, J. and Eaton, W. L., Transmission scanning: A useful adjunct to conventional emission scanning for accurately keying isotope deposition to radiographic anatomy. Radiology 87: 278–284 (1966).Google Scholar
  52. 52.
    Kuhl D. E., Edwards, R. O., Ricci, A. R. et al., The Mark IV system for radionuclide computed tomography of the brain. Radiology 121: 405–413 (1976).Google Scholar
  53. 53.
    Budinger T. F. and Gullberg, G. T., Three-dimensional reconstruction in nuclear medicine emission imaging. IEEE Trans Nucl Sci NS-21: 2–20 (1974).Google Scholar
  54. 54.
    Mirshanov D. M., Transmission-Emission Computer Tomograph, USSR Patent 621.386:616-073 20.01.87-SU-181935 (January 20, 1987).Google Scholar
  55. 55.
    Kaplan C. H., Transmission/emission registered image (TERI) computed tomography scanners, International patent application No. PCT/US90/03722 (1989).Google Scholar
  56. 56.
    Hasegawa B. H., Tang, H. R., Iwata, K. et al., Correlation of structure and function with dual modality imaging. Physica Medica 17: 241–248 (2001).Google Scholar
  57. 57.
    Hasegawa B. H., Reilly, S. M., Gingold, E. L. et al., Design considerations for a simultaneous emission-transmission CT scanner. [abstract] Radiology 173(P): 414 (1989).Google Scholar
  58. 58.
    Lang T. F., Hasegawa, B. H., Liew, S. C. et al., “A prototype emission-transmission imaging system” IEEE Nuclear Science Symposium and Medical Imaging Conference, Santa Fe, NM, Vol. 3; pp 1902–1906 (1991).Google Scholar
  59. 59.
    Kalki K., Blankespoor, S. C., Brown, J. K. et al., Myocardial perfusion imaging with a combined x-ray CT and SPECT system. J Nucl Med 38: 1535–1540 (1997).Google Scholar
  60. 60.
    Kalki K., Heanue, J. A., Blankespoor, S. C. et al., A combined SPECT and CT medical imaging system. Proc SPIE Vol. 2432; pp 367–375 (1995).ADSGoogle Scholar
  61. 61.
    Cohade C., Osman, M. M., Leal, J. et al., Direct comparison of F-18-FDG PET and PET/CT in patients with colorectal carcinoma. J Nucl Med 44: 1797–1803 (2003).Google Scholar
  62. 62.
    Fricke H., Fricke, E., Weise, R. et al., A method to remove artifacts in attenuation-corrected myocardial perfusion SPECT Introduced by misalignment between emission scan and CT-derived attenuation maps. J Nucl Med 45: 1619–1625 (2004).Google Scholar
  63. 63.
    Takahashi Y., Murase, K., Higashino, H. et al., Attenuation correction of myocardial SPECT images with X-ray CT: effects of registration errors between X-ray CT and SPECT. Ann Nucl Med 16: 431–435 (2002).Google Scholar
  64. 64.
    Blankespoor S. C., “Attenuation correction of SPECT using x-ray CT for myocardial perfusion assessment,” Master’s thesis, University of California, 1996.Google Scholar
  65. 65.
    Koral K. F., Dewaraja, Y., Li, J. et al., Update on hybrid conjugate-view SPECT tumor dosimetry and response in 131I-tositumomab therapy of previously untreated lymphoma patients. J Nucl Med 44: 457–464 (2003).Google Scholar
  66. 66.
    Keidar Z., Israel, O. and Krausz, Y., SPECT/CT in tumor imaging? technical aspects and clinical applications. Semin Nucl Med 33: 205–218 (2003).Google Scholar
  67. 67.
    Even-Sapir E., Lerman, H., Lievshitz, G. et al., Lymphoscintigraphy for sentinel node mapping using a hybrid SPECT/CT system. J Nucl Med 44: 1413–1420 (2003).Google Scholar
  68. 68.
    Israel O., Mor, M., Gaitini, D. et al., Combined functional and structural evaluation of cancer patients with a hybrid camera-based PET/CT system using F-18 FDG. J Nucl Med 43: 1129–1136 (2002).Google Scholar
  69. 69.
    Tang H. R., Da Silva, A. J., Matthay, K. K. et al., Neuroblastoma imaging using a combined CT scanner-scintillation camera and I-131 MIBG. J Nucl Med 42: 237–247 (2001).Google Scholar
  70. 70.
    Bocher M., Balan, A., Krausz, Y. et al., Gamma camera-mounted anatomical xray tomography: technology, system characteristics, and first images. Eur J Nucl Med 27: 619–627 (2000).Google Scholar
  71. 71.
    Liu Y., Wackers, F. J., Natale, D. et al., Validation of a hybrid SPECT/CT system with attenuation correction: A phantom study and multicenter trial. [abstract] J Nucl Med 44: 209P (2003).Google Scholar
  72. 72.
    Rajasekar D., Datta, N. R., Gupta, R. K. et al., Multimodality image fusion in dose escalation studies in brain tumors. J Appl Clin Med Phys 4: 8–16 (2003).Google Scholar
  73. 73.
    Schoder H., Larson, S. M. and Yeung, H. W. D., PET/CT in oncology: Integration into clinical management of lymphoma, melanoma, and gastrointestinal malignancies. J Nucl Med 45: 72S–81S (2004).Google Scholar
  74. 74.
    Cook G. J. R. and Ott, R. J., Dual-modality imaging. Eur Radiol 11: 1857–1858 (2001).Google Scholar
  75. 75.
    Chang L. T., A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci NS-25: 638–643 (1978).ADSGoogle Scholar
  76. 76.
    Harris C. C., Greer, K. L., Jaszczak, R. J. et al., Tc-99m attenuation coefficients in water-filled phantoms determined with gamma cameras. Med Phys 11: 681–685 (1985).Google Scholar
  77. 77.
    Malko J. A., Van Heertum, R. L., Gullberg, G. T. et al., SPECT liver imaging using an iterative attenuation correction algorithm and an external flood source. J Nucl Med 27: 701–705 (1986).Google Scholar
  78. 78.
    Thompson C. J., Ranger, N. T. and Evans, A. C., Simultaneous transmission and emission scans in positron emission tomography. IEEE Trans Nucl Sci 36: (1989).Google Scholar
  79. 79.
    Tsui B. M. W., Hu, H. B., Gilland, D. R. et al., Implementation of simultaneous attenuation and detector response correction in SPECT IEEE Trans Nucl Sci NS-35: 778–783 (1988).ADSGoogle Scholar
  80. 80.
    Tsui B. M. W., Gullberg, G. T., Edgerton, E. R. et al., Correction of nonuniform attenuation in cardiac SPECT imaging J Nucl Med 30: 497–507 (1989).Google Scholar
  81. 81.
    Blankespoor S., Wu, X., Kalki, K. et al., “Attenuation correction of SPECT using x-ray CT on an emission-transmission CT system” IEEE Nuclear Science Symposium and Medical Imaging Conference, Vol. 2; pp 1126–1130 (1995).Google Scholar
  82. 82.
    LaCroix K. J., “An investigation of the use of single-energy x-ray CT images for attenuation compensation in SPECT,” Master’s thesis, University of North Carolina at Chapel Hill, 1994.Google Scholar
  83. 83.
    Perring S., Summers, Q., Fleming, J. et al., A new method of quantification of the pulmonary regional distribution of aerosols using combined CT and SPECT and its application to nedocromil sodium administered by metered dose inhaler. Br J Radiol 67: 46–53 (1994).Google Scholar
  84. 84.
    Gullberg G. T., Huesman, R. H., Malko, J. A. et al., An attenuated projector-backprojector for iterative SPECT reconstruction. Phys Med Biol 30: 799–816 (1985).Google Scholar
  85. 85.
    Ficaro E. P. and Wackers, F. J., Should SPET attenuation correction be more widely employed in routine clinical practice? Eur J Nucl Med 29: 409–412 (2002).Google Scholar
  86. 86.
    Antoch G., Freudenberg, L. S., Beyer, T. et al., To enhance or not to enhance: [F-18]-FDG and CT contrast agents in dual-modality [F-18]-FDG PET/CT. J Nucl Med 45: 56S–65S (2004).Google Scholar
  87. 87.
    Carney J. P., Beyer, T., Brasse, D. et al., Clinical PET/CT using oral CT contrast agents. [abstract] J Nucl Med 44: 272P (2002).Google Scholar
  88. 88.
    Mukai T., Links, J. M., Douglass, K. H. et al., Scatter correction in SPECT using non-uniform attenuation data. Phys Med Biol 33: 1129–1140 (1988).Google Scholar
  89. 89.
    Kessler R. M., Ellis, J. R. and Eden, M., Analysis of emission tomographic scan data: Limitations imposed by resolution and background. J Comput Assist Tomogr 8: 514–522 (1984).Google Scholar
  90. 90.
    Tang H. R., Brown, J. K. and Hasegawa, B. H., Use of x-ray CT-defined regions of interest for the determination of SPECT recovery coefficients. IEEE Trans Nucl Sci 44: 1594–1599 (1997).ADSGoogle Scholar
  91. 91.
    Koole M., Laere, K. V., de Walle, R. V. et al., MRI guided segmentation and quantification of SPECT images of the basal ganglia: a phantom study. Comput Med Imaging Graph 25: 165–172 (2001).Google Scholar
  92. 92.
    Rousset O. G., Ma, Y. and Evans, A. C., Correction for partial volume effects in PET: principle and validation. J Nucl Med 39: 904–911 (1998).Google Scholar
  93. 93.
    Meltzer C. C., Kinahan, P. E., Greer, P. J. et al., Comparative evaluation of MR-based partial-volume correction schemes for PET. J Nucl Med 40: 2053–2065 (1999).Google Scholar
  94. 94.
    Koral K. F., Li, J., Dewaraja, Y. et al., I-131 anti-B1 therapy/tracer uptake ratio using a new procedure for fusion of tracer images to computed tomography images. Clin Cancer Res 5: 3004s–3009s (1999).Google Scholar
  95. 95.
    Koral K. F., Dewaraja, Y., Clarke, L. A. et al., Tumor-absorbed-dose estimates versus response in tositumomab therapy of previously untreated patients with follicular non-Hodgkin’s lymphoma: preliminary report. Cancer Biother Radiopharm 15: 347–355 (2000).Google Scholar
  96. 96.
    Formiconi A. R., Least squares algorithm for region-of-interest evaluation in emission tomography. IEEE Trans Med Imag 12: 90–100 (1993).Google Scholar
  97. 97.
    Liu A., Williams, L. E. and Raubitschek, A. A., A CT assisted method for absolute quantitation of internal radioactivity. Med Phys 23: 1919–1228 (1996).Google Scholar
  98. 98.
    Carson R. E., A maximum likelihood method for region-of-interest evaluation in emission tomography. J Comput Assist Tomogr 100: 654–663 (1986).Google Scholar
  99. 99.
    Koral K. F., Zasadny, K. R., Kessler, M. L. et al., CT-SPECT fusion plus conjugate views for determining dosimetry in iodine-131-monoclonal antibody therapy of lymphoma patients. J Nucl Med 35: 1714–1720 (1994).Google Scholar
  100. 100.
    Koral K. F., Lin, S., Fessler, J. A. et al., Preliminary results from intensity based CT-SPECT fusion in I-131 anti-B1 monoclonal-antibody therapy of lymphoma. Cancer 80: 2538–2544 (1997).Google Scholar
  101. 101.
    Koral K. F., Dewaraja, Y., Li, J. et al., Initial results for hybrid SPECT — conjugate-view tumor dosimetry in 131I-anti-B1 antibody therapy of previously untreated patients with lymphoma. J Nucl Med 41: 1579–1586 (2000).Google Scholar
  102. 102.
    Koral K. F., Francis, I. R., Kroll, S. et al., Volume reduction versus radiation dose for tumors in previously untreated lymphoma patients who received iodine-131 tositumomab therapy. Conjugate views compared with a hybrid method. Cancer 94: 1258–1263 (2002).Google Scholar
  103. 103.
    Koral K. F., Kaminski, M. S. and Wahl, R. L., Correlation of tumor radiation-absorbed dose with response is easier to find in previously untreated patients. J Nucl Med 44: 1541–1543 (2003).Google Scholar
  104. 104.
    Koral K. F., Zaidi, H. and Ljungberg, M., “Medical imaging techniques for radiation dosimetry” in: Therapeutic applications of Monte Carlo calculations in nuclear medicine, edited by H Zaidi and G Sgouros Institute of Physics Publishing, Bristol, (2002), pp 55–83.Google Scholar
  105. 105.
    Patton J. A., Delbeke, D. and Sandler, M. P., Image fusion using an integrated, dual-head coincidence camera with x-ray tube-based attenuation maps. J Nucl Med 41: 1364–1368 (2000).Google Scholar
  106. 106.
    Ratib O., PET/CT image navigation and communication. J Nucl Med 45: 46S–55S (2004).Google Scholar
  107. 107.
    Steinert H. C. and von Schulthess, G. K., Initial clinical experience using a new integrated in-line PET/CT system. Br J Radiol 73: S36–S38 (2002).Google Scholar
  108. 108.
    Beyer T., Antoch, G., Muller, S. et al., Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med 45: 25S–35S (2004).Google Scholar
  109. 109.
    Bar-Shalom R., Yefemov, N., Guralnik, L. et al., Clinical performance of PET/CT in evaluation of cancer: Additional value for diagnostic imaging and patient management. J Nucl Med 44: 1200–1209 (2003).Google Scholar
  110. 110.
    Cohade C. and Wahl, R. L., Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomography-clinical use, interpretation, methods, diagnostic improvements. Semin Nucl Med 33: 228–237 (2003).Google Scholar
  111. 111.
    Cherry S. R., In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol 49: R13–R48 (2004).ADSGoogle Scholar
  112. 112.
    Weissleder R. and Mahmood, U., Molecular imaging. Radiology 219: 316–333 (2001).Google Scholar
  113. 113.
    Hanahan D., Transgenic mice as probes into complex systems. Science 246: 1265–1275 (1989).ADSGoogle Scholar
  114. 114.
    Sigmund C. D., Major approaches for generating and analyzing transgenic mice. Hypertension 22: 599–607 (1993).Google Scholar
  115. 115.
    Wight D. C. and Wagner, T. E., Transgenic mice: a decade of progress in technology and research. Mutation Res 307: 429–440 (1994).Google Scholar
  116. 116.
    James J. F., Hewett, T. E. and Robbins, J., Cardiac physiology in transgenic mice. Circ Res 82: 407–415 (1998).Google Scholar
  117. 117.
    Wu M. C., Gao, D. W., Sievers, R. E. et al., Pinhole single-photon emission computed tomography for myocardial perfusion imaging of mice. J Am Coll Cardiol 42: 576–582 (2003).Google Scholar
  118. 118.
    Paulus M. J., Sari-Sarraf, H., Bleason, S. S. et al., A new x-ray computed tomography system for laboratory mouse imaging. IEEE Trans Nucl Sci 46:558–564 (1999).ADSGoogle Scholar
  119. 119.
    Cherry S. R., Shao, Y., Silverman, R. W. et al., MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 44: 1161–1166 (1997).ADSGoogle Scholar
  120. 120.
    Hasegawa B. H., Wu, M. C., Iwata, K. et al., Applications of penetrating radiation for small animal imaging. Proc SPIE Vol. 4786; pp 80–90 (2002).ADSGoogle Scholar
  121. 121.
    Paulus M. J., Gleason, S. S., Kennel, S. J. et al., High resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia 2: 62–70 (2000).Google Scholar
  122. 122.
    Kennel S. J., Davis, I. A., Branning, J. et al., High resolution computed tomography and MRI for monitoring lung tumor growth in mice undergoing radioimmunotherapy: correlation with histology. Med Phys 27: 1101–1107 (2000).Google Scholar
  123. 123.
    Paulus M. J., Gleason, S. S., Easterly, M. E. et al., A review of high-resolution X-ray computed tomography and other imaging modalities for small animal research. Lab Anim (NY) 30: 36–45 (2001).Google Scholar
  124. 124.
    Ishizu K., Mukai, T., Yonekura, Y. et al., Ultra-high resolution SPECT system using four pinhole collimators for small animal studies. J Nucl Med 36: 2282–2286 (1995).Google Scholar
  125. 125.
    Jaszczak R. J., Li, J., Wang, H. et al., Pinhole collimation for ultra highresolution, small field of view SPECT. Phys Med Biol 39: 425–437 (1994).Google Scholar
  126. 126.
    MacDonald L. R., Patt, B. E., Iwanczyk, J. S. et al., Pinhole SPECT of mice using the LumaGEM gamma camera. IEEE Trans Nucl Sci 48: 830–836 (2001).ADSGoogle Scholar
  127. 127.
    Ogawa K., Kawade, T., Nakamura, K. et al., Ultra high resolution pinhole SPECT for small animal study. IEEE Trans Nucl Sci 45: 3122–3126 (1998).ADSGoogle Scholar
  128. 128.
    Wu M. C., Hasegawa, B. H. and Dae, M. W., Performance evaluation of a pinhole SPECT system for myocardial perfusion imaging of mice. Med Phys 29: 2830–2839 (2002).Google Scholar
  129. 129.
    Weber D. A. and Ivanovic, M., Pinhole SPECT: ultra-high resolution imaging for small animal studies. J Nucl Med 36: 2287–2289 (1995).Google Scholar
  130. 130.
    Shao Y., Cherry, S. R., Farahani, K. et al., Simultaneous PET and MR imaging. Phys Med Biol 42: 1965–1970 (1997).Google Scholar
  131. 131.
    Goertzen A. L., Meadors, A. K., Silverman, R. W. et al., Simultaneous molecular and anatomical imaging of the mouse in vivo. Phys Med Biol 21: 4315–4328 (2002).Google Scholar
  132. 132.
    Weisenberger A. G., Wojcik, R., Bradley, E. L. et al., SPECT-CT system for small animal imaging. IEEE Trans Nucl Sci 50: 74–79 (2003).ADSGoogle Scholar
  133. 133.
    Williams M. B., Zhang, G., More, M. J. et al., Integrated CT-SPECT system for small animal imaging. Proc SPIE Vol. 4142; pp 265–274 (2000).ADSGoogle Scholar
  134. 134.
    Welsh R. E., Brewer, P., Bradley, E. L. et al., “An economical dual-modality small animal imaging system with application to studies of diabetes” IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 3; pp 1845–1848 (2002).Google Scholar
  135. 135.
    Kastis G. A., Furenlid, L. R., Wilson, D. W. et al., Compact CT/SPECT small-animal imaging system. IEEE Trans Nucl Sci 51: 63–67 (2004).ADSGoogle Scholar
  136. 136.
    Iwata K., Wu, M. C. and Hasegawa, B. H., “Design of combined x-ray CT and SPECT systems for small animals” IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 3; pp 1608–1612 (1999).Google Scholar
  137. 137.
    Iwata K., Hwang, A. B., Wu, M. C. et al., “Design and utility of a small animal CT/SPECT system” IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 3; pp 1849–1852 (2002).Google Scholar
  138. 138.
    MacDonald L. R., Iwata, K., Patt, B. E. et al., Evaluation of x-ray detectors for dual-modality CT-SPECT animal imaging. Proc SPIE Vol. 4786; pp 91–102 (2002).ADSGoogle Scholar
  139. 139.
    Andre M. P., Spivey, B. A., Martin, P. J. et al., Integrated CMOS-selenium x-ray detector for digital mammography. Proc SPIE Vol. 3336; pp 204–209 (1998).ADSGoogle Scholar
  140. 140.
    Song X., Frey, E. C. and Tsui, B. M. W., “Development and evaluation of a microCT system for small animal imaging” IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 3; pp 1600–1604 (2002).Google Scholar
  141. 141.
    Hwang A. B., Iwata, K., Sakdinawat, A. E. et al., “Gantry specifications for a dual modality imaging system for small animals” IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 2; pp 1303–1307 (2003).Google Scholar
  142. 142.
    Varady P., Li, J. Z., Alden, T. D. et al., CT and radionuclide study of BMP-2 gene therapy-induced bone formation. Acad Radiol 9: 632–637 (2002).Google Scholar
  143. 143.
    MacDonald L. R., Iwanczyk, J. S., Patt, B. E. et al., “Development of new high resolution detectors for small animal SPECT imaging” IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 3; pp 21/75 (2002).Google Scholar
  144. 144.
    McElroy D. P., MacDonald, L. R., Beekman, F. J. et al., Performance evaluation of A-SPECT: A high resolution desktop pinhole SPECT system for imaging small animals. IEEE Trans Nucl Sci 49: 2139–2147 (2002).ADSGoogle Scholar
  145. 145.
    Yazaki P. J., Shively, L., Clark, C. et al., Mammalian expression and hollow fiber bioreactor production of recombinant anti-CEA diabody and minibody for clinical applications. J Immun Methods 253: 195–208 (2001).Google Scholar
  146. 146.
    Hasegawa B. H., Barber, W. C., Funk, T. et al., Implementation and applications of dual-modality imaging. Nucl Instr Meth Phys Res A 525: 236–241 (2004).ADSGoogle Scholar
  147. 147.
    Weber D. A. and Ivanovic, M., Ultra-high-resolution imaging of small animals: implications for preclinical and research studies. J Nucl Cardiol 6: 332–344 (1999).Google Scholar
  148. 148.
    Paulino A. C., Thorstad, W. L. and Fox, T., Role of fusion in radiotherapy treatment planning Semin Nucl Med 33: 238–243 (2003).Google Scholar
  149. 149.
    Munley M. T., Marks, L. B., Scarfone, C. et al., Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer 23: 105–14 (1999).Google Scholar
  150. 150.
    Osman M. M., Cohade, C., Nakamoto, Y. et al., Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med 44: 240–243 (2003).Google Scholar
  151. 151.
    Nahmias C., Nutt, R., Hichwa, R. D. et al., PET tomograph designed for five minute routine whole body studies. [abstract] J Nucl Med 43: 11P (2002).Google Scholar
  152. 152.
    Nelson S. J., Vigneron, D. B. and Dillon, W. P., Serial evaluation of patients with brain tumors using volume MRI and 3D 1H MRSI. NMR Biomed 12: 123–138 (1999).Google Scholar
  153. 153.
    Kurhanewicz J., Swanson, M. G., Nelson, S. J. et al., Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging 16: 451–463 (2002).Google Scholar
  154. 154.
    Boxt L. M., Lipton, M. J., Kwong, R. Y. et al., Computed tomography for assessment of cardiac chambers, valves, myocardium and pericardium. Cardiol Clin 21: 561–585 (2003).Google Scholar
  155. 155.
    Chan F. P., Cardiac multidetector-row computed tomography: principles and applications. Semin Roentgenol 38: 294–302 (2003).Google Scholar
  156. 156.
    Nieman K., Rensing, B., Munne, A. et al., Three-dimensional coronary anatomy in contrast-enhanced multislice computed tomography. Prev Cardiol 5: 79–83 (2002).Google Scholar
  157. 157.
    Foley W. D. and Karcaaltincaba, M., Computed tomography angiography: Principles and clinical applications. J Comput Assist Tomogr 27: S23–S30 (2003).Google Scholar
  158. 158.
    Peterson T. F., Kim, H., Crawford, M. J. et al., “SemiSPECT: A small-animal imaging system based on eight CdZnTe pixel detectors” IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 3; pp 1844–1847 (2003).Google Scholar
  159. 159.
    Liu Z., Kastis, G. A., Stevenson, G. D. et al., Quantitative analysis of acute myocardial infarct in rat hearts with ischemia-reperfusion using a high-resolution stationary SPECT system. J Nucl Med 43: 933–939 (2002).Google Scholar
  160. 160.
    Schramm N. U., Ebel, G., Engeland, U. et al., High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 50: 315–320 (2003).ADSGoogle Scholar
  161. 161.
    Shao Y., Cherry, S. R., Farahani, K. et al., Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci 44: 1167–1171 (1997).ADSGoogle Scholar
  162. 162.
    Slates R., Cherry, S. R., Boutefnouchet, A. et al., Design of a small animal MR compatible PET scanner. IEEE Trans Nucl Sci 46: 565–570 (1999).ADSGoogle Scholar
  163. 163.
    Christensen N. L., Hammer, B. E., Heil, B. G. et al., Positron emission tomography within a magnetic field using photomultiplier tubes and light-guides. Phys Med Biol 40: 691–697 (1995).Google Scholar
  164. 164.
    Hammer B. E., Christensen, N. L. and Heil, B. G., Use of a magnetic field to increase the spatial resolution of positron emission tomography. Med Phys 21:1917–1920 (1994).Google Scholar
  165. 165.
    Mackewn J. E., Strul, D., Hallett, W. A. et al., “Design and development of an MR-compatible PET scanner for imaging small animals” IEEE Nuclear Science Symposium and Medical Imaging Conference, Rome, Italy, (2004) in press Google Scholar
  166. 166.
    Gaa J., Rummeny, E. J. and Seemann, M. D., Whole-body imaging with PET/MRI. Eur J Med Res 30: 309–312 (2004).Google Scholar
  167. 167.
    Maronpot R. R., Sills, R. C. and Johnson, G. A., Applications of magnetic resonance microscopy. Toxicol Pathol 32: 42–48 (2004).Google Scholar
  168. 168.
    Johnson G. A., Cofer, G. P., Gewalt, S. L. et al., Morphologic phenotyping with MR microscopy: the visible mouse. Radiology 222: 789–793 (2002).Google Scholar
  169. 169.
    Hu X. and Norris, D. G., Advances in high-field magnetic resonance imaging. Annu Rev Biomed Eng 6: 157–184 (2004).Google Scholar
  170. 170.
    Lima J. A. and Desai, M. Y., Cardiovascular magnetic resonance imaging: current and emerging applications. J Am Coll Cardiol 15: 1164–1171 (2004).Google Scholar
  171. 171.
    Hasumi M., Suzuki, K., Taketomi, A. et al., The combination of multi-voxel MR spectroscopy with MR imaging improve the diagnostic accuracy for localization of prostate cancer. Anticancer Res 23: 4223–4227 (2003).Google Scholar
  172. 172.
    Yeung D. K., Yang, W. T. and Tse, G. M., Breast cancer: in vivo proton MR spectroscopy in the characterization of histopathologic subtypes and preliminary observations in axillary node metastases. Radiology 225: 190–197 (2002).Google Scholar
  173. 173.
    Turner D. A., MR spectroscopy and imaging of breast cancer. A brief history. Magn Reson Imaging Clin N Am 2: 505–510 (1994).Google Scholar
  174. 174.
    Coakley F. V., Teh, H. S., Qayyum, A. et al., Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology 233: 441–448 (2004).Google Scholar
  175. 175.
    Coakley F. V., Qayyum, A. and Kurhanewicz, J., Magnetic resonance imaging and spectroscopic imaging of prostate cancer. J Urol 170: S69–75; discussion S75–76 (2003).Google Scholar
  176. 176.
    Swanson M. G., Vigneron, D. B., Tran, T. K. et al., Magnetic resonance imaging and spectroscopic imaging of prostate cancer. Cancer Invest 19: 510–523 (2001).Google Scholar
  177. 177.
    Vick G. W., Recent advances in pediatric cardiovascular MRI. Curr Opin Pediatr 15: 454–462 (2003).Google Scholar
  178. 178.
    Zaidi H., Montandon, M.-L. and Slosman, D. O., Magnetic resonance imagingguided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 30: 937–948 (2003).Google Scholar
  179. 179.
    Slates R., Farahani, K., Shao, Y. et al., A study of artefacts in simultaneous PET and MR imaging using a prototype MR comptatible PET scanner. Phys Med Biol 44: 2015–2027 (1999).Google Scholar
  180. 180.
    Garlick P. B., Marsden, P. K., Cave, A. C. et al., PET and NMR dual acquisition (PANDA): Applications to isolated perfused rat hearts. NMR Biomed 10: 138–142 (1997).Google Scholar
  181. 181.
    Garlick P. B., Simultaneous PET and NMR-Initial results from isolated, perfused rat hearts. Br J Radiol 75 Spec No: S60–66 (2002).Google Scholar
  182. 182.
    Marsden P. K., Strul, D., Keevil, S. F. et al., Simultaneous PET and NMR. Br J Radiol 75 Spec No: S53–59 (2002).Google Scholar
  183. 183.
    Pichler B., Lorenz, E., Mirzoyan, R. et al., “Performance tests of a LSO-APD PET module in a 9.4 Tesla magnet” IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 2; pp 1237–1239 (1997).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • B. H. Hasegawa
    • 1
  • H. Zaidi
    • 2
  1. 1.Department of RadiologyUniversity of CaliforniaSan FranciscoUSA
  2. 2.Division of Nuclear MedicineGeneva University HospitalGenevaSwitzerland

Personalised recommendations