Quantitative Analysis in Functional Brain Imaging

  • K. Van Laere
  • H. Zaidi

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gilman S., Imaging the brain. New Engl J Med 338: 812–820 (1998).Google Scholar
  2. 2.
    Mazziota J. C., Toga, A. W. and Frackowiak, R. S., Brain Mapping: The Disorders, Academic Press, San Diego, (2000).Google Scholar
  3. 3.
    Costa D. C., Pilowsky, L. S. and Ell, P. J., Nuclear medicine in neurology and psychiatry. Lancet 354: 1107–1111 (1999).Google Scholar
  4. 4.
    Kouris K., Clarke, G. A., Jarritt, P. H. et al., Physical performance evaluation of the Toshiba GCA-9300A triple-headed system. J.Nucl Med. 34: 1778–1789 (1993).Google Scholar
  5. 5.
    Wienhard K., Schmand, M., Casey, M. E. et al., The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci 49: 104–110 (2002).ADSGoogle Scholar
  6. 6.
    Braem A., Chesi, E., Joram, C. et al., “Novel design of high-resolution parallax-free Compton enhanced PET scanner dedicated to brain research” Conf. Proc. of the First International meeting on Applied Physics, 15–18th October 2003, Badajoz, Spain, Vol. pp 86–87 (2003).Google Scholar
  7. 7.
    Friston K., Holmes, A., Worsley, K. et al., Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping 2: 189–210 (1995).Google Scholar
  8. 8.
    Kung H. F., Kung, M. P. and Choi, S. R., Radiopharmaceuticals for single-photon emission computed tomography brain imaging. Semin Nucl Med 33: 2–13 (2003).Google Scholar
  9. 9.
    Herzog H., Basic ideas and principles for quantifying regional blood flow with nuclear medical techniques. Nuklearmedizin 35: 181–185 (1996).Google Scholar
  10. 10.
    Signorini M., Paulesu, E., Friston, K. et al., Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: A clinical validation of statistical parametric mapping. Neuroimage. 9: 63–80 (1999).Google Scholar
  11. 11.
    Alavi A., Smith, R. and Duncan, D., What are the sources of error in measuring and calculating cerebral metabolic rates with fluorine-18-fluorodeoxyglucose and PET? [editorial; comment]. J Nucl Med 35: 1466–1470 (1994).Google Scholar
  12. 12.
    Lassen N. A., Cerebral blood flow quantitation in clinical routine studies: how far have we now come? J Nucl Med 36: 2343–2344 (1995).Google Scholar
  13. 13.
    Rosenthal M. S., Cullom, J., Hawkins, W. et al., Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med 36: 1489–1513 (1995).Google Scholar
  14. 14.
    Zaidi H., Quantitative SPECT: Recent developments in detector response, attenuation and scatter correction techniques. Phys Med 12: 101–117 (1996).Google Scholar
  15. 15.
    Heiss W. D., Graf, R., Grond, M. et al., Quantitative neuroimaging for the evaluation of the effect of stroke treatment. Cerebrovasc Dis 8Suppl 2: 23–29 (1998).Google Scholar
  16. 16.
    Meyer M. A., Quantitative brain SPECT and the NIH Stroke Scale. Stroke 29: 1480 (1998).Google Scholar
  17. 17.
    Venneri A., Shanks, M. F., Staff, R. T. et al., Evaluating improvements in rCBF in patients with Alzheimer’s disease treated with rivastigmine using SPM. Neuroimage 13: S1112 (2001).Google Scholar
  18. 18.
    Nelson A. D., Miraldi, F., Muzic, R. F., Jr. et al., Noninvasive arterial monitor for quantitative oxygen-15-water blood flow studies. J Nucl Med 34: 1000–1006 (1993).Google Scholar
  19. 19.
    Takikawa S., Dhawan, V., Spetsieris, P. et al., Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology 188: 131–136 (1993).Google Scholar
  20. 20.
    Watabe H., Itoh, M., Cunningham, V. et al., Noninvasive quantification of rCBF using positron emission tomography. J Cereb Blood Flow Metab 16: 311–319 (1996).Google Scholar
  21. 21.
    Eberl S., Anayat, A. R., Fulton, R. R. et al., Evaluation of two population-based input functions for quantitative neurological FDG PET studies. Eur J Nucl Med 24: 299–304 (1997).Google Scholar
  22. 22.
    Shiozaki T., Sadato, N., Senda, M. et al., Noninvasive estimation of FDG input function for quantification of cerebral metabolic rate of glucose: optimization and multicenter evaluation. J Nucl Med 41: 1612–1618 (2000).Google Scholar
  23. 23.
    Chen K., Bandy, D., Reiman, E. et al., Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. J Cereb Blood Flow Metab 18: 716–723 (1998).Google Scholar
  24. 24.
    Iida H., Miura, S., Shoji, Y. et al., Noninvasive quantitation of cerebral blood flow using oxygen-15-water and a dual-PET system. J Nucl Med 39: 1789–1798 (1998).Google Scholar
  25. 25.
    Matsuda H., Higashi, S., Tsuji, S. et al., A new noninvasive quantitative assessment of cerebral blood flow using N-isopropyl-(iodine 123)p-iodoamphetamine. Am J Physiol Imaging 2: 49–55 (1987).Google Scholar
  26. 26.
    Matsuda H., Tsuiji, S., Shuke, N. et al., A quantitative approach to technetium-99m hexamethylpropylene amine oxime. Eur J Nucl Med 19: 195–200 (1992).Google Scholar
  27. 27.
    Iida H., Itoh, H., Nakazawa, M. et al., Quantitative mapping of regional cerebral blood flow using iodine-123-IMP and SPECT. J Nucl Med 35: 2019–2030 (1994).Google Scholar
  28. 28.
    Odano I., Ohkubo, M. and Yokoi, T., Noninvasive quantification of cerebral blood flow using 99mTc-ECD and SPECT. J Nucl Med 40: 1737–1744 (1999).Google Scholar
  29. 29.
    Van Laere K., Dumont, F., Koole, M. et al., Non-invasive methods for absolute cerebral blood flow measurement using 99mTc-ECD: a study in healthy volunteers. Eur J Nucl Med 28: 862–872 (2001).Google Scholar
  30. 30.
    Yang Y., Frank, J. A., Hou, L. et al., Multislice imaging of quantitative cerebral perfusion with pulsed arterial spin labeling. Magn Reson Med 39: 825–832 (1998).Google Scholar
  31. 31.
    Hennig J., Speck, O., Koch, M. A. et al., Functional magnetic resonance imaging: a review of methodological aspects and clinical applications. J Magn Reson Imaging 18: 1–15 (2003).Google Scholar
  32. 32.
    Bohm C., Greitz, T. and Eriksson, L., A computerized adjustable brain atlas. Eur J Nucl Med 15: 687–689 (1989).Google Scholar
  33. 33.
    Senda M., Anatomic standardization, although controversial, finds yet another application. J Nucl Med 41: 1888–1891 (2000).Google Scholar
  34. 34.
    Roland P. E. and Zilles, K., Brain atlases-a new research tool. Trends Neurosci 17: 458–467 (1994).Google Scholar
  35. 35.
    Minoshima S., Koeppe, R. A., Frey, K. A. et al., Anatomic standardization: linear scaling and nonlinear warping of functional brain images. J Nucl Med 35: 1528–1537 (1994).Google Scholar
  36. 36.
    Sugiura M., Kawashima, R., Sadato, N. et al., Anatomic validation of spatial normalization methods for PET. J Nucl Med 40: 317–322 (1999).Google Scholar
  37. 37.
    Van Laere K., Koole, M., D’Asseler, Y. et al., Automated stereotactic standardization of brain SPECT receptor data using single-photon transmission images. J Nucl Med 42: 361–375 (2001).Google Scholar
  38. 38.
    Minoshima S., Koeppe, R. A., Frey, K. A. et al., Stereotactic PET atlas of the human brain: aid for visual interpretation of functional brain images. J Nucl Med 35: 949–954 (1994).Google Scholar
  39. 39.
    Friston K. J., Ashburner, J., Frith, C. D. et al., Spatial registration and normalisation of images. Human Brain Map 2: 165–189 (1995).Google Scholar
  40. 40.
    Maes F., Collignon, A., Vandermeulen, D. et al., Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16: 187–198 (1997).Google Scholar
  41. 41.
    Brett M., Leff, A. P., Rorden, C. et al., Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 14: 486–500 (2001).Google Scholar
  42. 42.
    Stamatakis E. A., Wilson, J. T. and Wyper, D. J., Using lesion masking to facilitate nonlinear alignment of SPECT images. NeuroImage 13: S42 (2001).Google Scholar
  43. 43.
    Studholme C., Hill, D. L. and Hawkes, D. J., Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med Phys 24: 25–35 (1997).Google Scholar
  44. 44.
    Rabiner E. A., Messa, C., Sargent, P. A. et al., A database of [(11)C]WAY-100635 binding to 5-HT(1A) receptors in normal male volunteers: normative data and relationship to methodological, demographic, physiological, and behavioral variables. Neuroimage 15: 620–632 (2002).Google Scholar
  45. 45.
    Ito H., Okubo, Y., Halldin, C. et al., Mapping of central D2 dopamine receptors in man using [11C] raclopride: PET with anatomic standardization technique. NeuroImage 9: 235–242 (1999).Google Scholar
  46. 46.
    Meyer J. H., Gunn, R. N., Myers, R. et al., Assessment of spatial normalization of PET ligand images using ligand-specific templates. Neuroimage 9: 545–553 (1999).Google Scholar
  47. 47.
    Okubo Y., Olsson, H., Ito, H. et al., PET mapping of extrastriatal D2-like dopamine receptors in the human brain using an anatomic standardization technique and [11C]FLB 457. Neuroimage 10: 666–674 (1999).Google Scholar
  48. 48.
    Frey K. A., Minoshima, S., Koeppe, R. A. et al., Stereotaxic summation analysis of human cerebral benzodiazepine binding maps. J Cereb.Blood Flow Metab 16: 409–417 (1996).Google Scholar
  49. 49.
    Van Laere K., Versijpt, J., Audenaert, K. et al., 99mTc-ECD brain perfusion SPET: variability, asymmetry and effects of age and gender in healthy adults. Eur J Nucl Med 28: 873–887 (2001).Google Scholar
  50. 50.
    Hammers A., Allom, R., Koepp, M. J. et al., Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp 19: 224–247 (2003).Google Scholar
  51. 51.
    Zaidi H., M-L, M. and Slosman, D. O., Magnetic resonance imaging-guided attenuation correction in 3D brain positron emission tomography. Med Phys 30: 937–948 (2003).Google Scholar
  52. 52.
    Friston K. J., Holmes, A., Poline, J. B. et al., Detecting activations in PET and fMRI: levels of inference and power. Neuroimage 4: 223–235 (1996).Google Scholar
  53. 53.
    Ashburner J. and Friston, K., Voxel-based morphometry: the methods. Neuroimage 11: 805–821 (2000).Google Scholar
  54. 54.
    Ashburner J., Neelin, P., Collins, D. L. et al., Incorporating prior knowledge into image registration. Neuroimage 6: 344–352 (1997).Google Scholar
  55. 55.
    Ashburner J. and Friston, K. J., Nonlinear spatial normalization using basis functions. Hum Brain Mapp 7: 254–266 (1999).Google Scholar
  56. 56.
    Salmond C. H., Ashburner, J., Vargha-Khadem, F. et al., The precision of anatomical normalization in the medial temporal lobe using spatial basis functions. Neuroimage 17: 507–512 (2002).Google Scholar
  57. 57.
    Talairach J. and Tournoux, P., Co-planar stereotactic atlas of the human brain, Thieme Medical Publishers, Stuttgart, (1988).Google Scholar
  58. 58.
    Brett M., Christoff, K., Cusack, R. et al., Using the Talairach atlas with the MNI template. Neuroimage 13: S85 (2001).Google Scholar
  59. 59.
    Hoffman E. J., Cutler, P. D., Guerrero, T. M. et al., Assessment of accuracy of PET utilizing a 3-D phantom to simulate the activity distribution of [18F]fluorodeoxyglucose uptake in the human brain. J Cereb Blood Flow Metab 11: A17–25 (1991).Google Scholar
  60. 60.
    Lahorte P., Vandenberghe, S., Van Laere, K. et al., Assessing the performance of SPM analyses of SPECT neuroactivation studies. Neuroimage 12: 757–764 (2000).Google Scholar
  61. 61.
    Schoenahl F., Montandon, M.-L., Slosman, D. et al., “Assessment of the performance of SPM analysis in PET neuroactivation studies: A Monte Carlo investigation.” Conf. Proc. of the VIIth International Meeting on Fully Three-dimensional Image Reconstruction in Radiology and Nuclear Medicine, 29 June–4 July 2003, Saint-Malo, France. Available on CDROM.Google Scholar
  62. 62.
    Van Laere K. J., Versijpt, J., Koole, M. et al., Experimental performance assessment of SPM for SPECT neuroactivation studies using a subresolution sandwich phantom design. Neuroimage 16: 200–216 (2002).Google Scholar
  63. 63.
    Kiebel S. J., Goebel, R. and Friston, K. J., Anatomically informed basis functions. Neuroimage 11: 656–667 (2000).Google Scholar
  64. 64.
    Kiebel S. J. and Friston, K. J., Analysis of multisubject neuroimaging data using anatomically informed basis functions. Neuroimage 13: S172 (2001).Google Scholar
  65. 65.
    Davatzikos C., Li, H. H., Herskovits, E. et al., Accuracy and sensitivity of detection of activation foci in the brain via statistical parametric mapping: a study using a PET simulator. Neuroimage. 13: 176–184 (2001).Google Scholar
  66. 66.
    Nichols T. E. and Holmes, A. P., Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Map 15: 1–25 (2002).Google Scholar
  67. 67.
    Kuhl D. E., Koeppe, R. A., Fessler, J. A. et al., In vivo mapping of cholinergic neurons in the human brain using SPECT and IBVM. J Nucl Med 35: 405–410 (1994).Google Scholar
  68. 68.
    Minoshima S., Frey, K. A., Foster, N. L. et al., Preserved pontine glucose metabolism in Alzheimer disease: a reference region for functional brain image (PET) analysis. J Comput Assist Tomogr 19: 541–547 (1995).Google Scholar
  69. 69.
    Burdette J. H., Minoshima, S., Vander Borght, T. et al., Alzheimer disease: improved visual interpretation of PET images by using three-dimensional stereotaxic surface projections. Radiology 198: 837–843 (1996).Google Scholar
  70. 70.
    Kuhl D. E., Minoshima, S., Fessler, J. A. et al., In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 40: 399–410 (1996).Google Scholar
  71. 71.
    Minoshima S., Giordani, B., Berent, S. et al., Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42: 85–94 (1997).Google Scholar
  72. 72.
    Vander B. T., Minoshima, S., Giordani, B. et al., Cerebral metabolic differences in Parkinson’s and Alzheimer’s diseases matched for dementia severity. J Nucl Med 38: 797–802 (1997).Google Scholar
  73. 73.
    Bartenstein P., Minoshima, S., Hirsch, C. et al., Quantitative assessment of cerebral blood flow in patients with Alzheimer’s disease by SPECT. J Nucl Med 38: 1095–1101 (1997).Google Scholar
  74. 74.
    Cross D. J., Minoshima, S., Nishimura, S. et al., Three-dimensional stereotactic surface projection analysis of macaque brain PET: development and initial applications. J Nucl Med 41: 1879–1887 (2000).Google Scholar
  75. 75.
    Hosoda K., Kawaguchi, T., Ishii, K. et al., Prediction of hyperperfusion after carotid endarterectomy by brain SPECT analysis with semiquantitative statistical mapping method. Stroke 34: 1187–1193 (2003).Google Scholar
  76. 76.
    Acton P. D. and Friston, K. J., Statistical parametric mapping in functional neuroimaging: beyond PET and fMRI activation studies [editorial]. Eur J Nucl Med 25: 663–667 (1998).Google Scholar
  77. 77.
    Weeks R. A., Cunningham, V. J., Piccini, P. et al., 11C-diprenorphine binding in Huntington’s disease: a comparison of region of interest analysis with statistical parametric mapping. J Cereb Blood Flow Metab 17: 943–949 (1997).Google Scholar
  78. 78.
    Liow J. S., Rehm, K., Strother, S. C. et al., Comparison of voxel-and volume-of-interest-based analyses in FDG PET scans of HIV positive and healthy individuals. J Nucl Med 41: 612–621 (2000).Google Scholar
  79. 79.
    Van Laere K. J., Warwick, J., Versijpt, J. et al., Analysis of clinical brain SPECT data based on anatomic standardization and reference to normal data: an ROC-based comparison of visual, semiquantitative, and voxel-based methods. J Nucl Med 43: 458–469 (2002).Google Scholar
  80. 80.
    Montandon M.-L., Slosman, D. O. and Zaidi, H., Assessment of the impact of model-based scatter correction on 18F-[FDG] 3D brain PET in healthy subjects using statistical parametric mapping. Neuroimage 20: 1848–1856 (2003).Google Scholar
  81. 81.
    Magnotta V., Andreasen, N., O’Leary, D. et al., Brain structures defined by an artificial neural network. Neuroimage 13: S29 (2001).Google Scholar
  82. 82.
    Page M. P., Howard, R. J., O’Brien, J. T. et al., Use of neural networks in brain SPECT to diagnose Alzheimer’s disease. J Nucl Med 37: 195–200 (1996).Google Scholar
  83. 83.
    Kippenhan J. S., Barker, W. W., Nagel, J. et al., Neural-network classification of normal and Alzheimer’s disease subjects using high-resolution and low-resolution PET cameras. J Nucl Med 35: 7–15 (1994).Google Scholar
  84. 84.
    Munley M. T., Floyd, C. E., Jr., Bowsher, J. E. et al., An artificial neural network approach to quantitative single photon emission computed tomographic reconstruction with collimator, attenuation, and scatter compensation. Med Phys 21: 1889–1899 (1994).Google Scholar
  85. 85.
    Hamilton D., O’Mahony, D., Coffey, J. et al., Classification of mild Alzheimer’s disease by artificial neural network analysis of SPET data. Nucl Med Commun 18: 805–810 (1997).Google Scholar
  86. 86.
    Strother S. C., Anderson, J. R., Schaper, K. A. et al., Principal component analysis and the scaled subprofile model compared to intersubject averaging and statistical parametric mapping: I. “Functional connectivity” of the human motor system studied with [15O]water PET. J Cereb Blood Flow Metab 15: 738–753 (1995).Google Scholar
  87. 87.
    Strother S. C., Liow, J. S., Moeller, J. R. et al., Absolute quantitation in neurological PET: do we need it? J Cereb Blood Flow Metab 11: A3–16 (1991).Google Scholar
  88. 88.
    Eidelberg D., Moeller, J. R., Dhawan, V. et al., The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 14: 783–801 (1994).Google Scholar
  89. 89.
    Moeller J. R., Ishikawa, T., Dhawan, V. et al., The metabolic topography of normal aging. J Cereb.Blood Flow Metab 16: 385–398 (1996).Google Scholar
  90. 90.
    Antonini A., Moeller, J. R., Nakamura, T. et al., The metabolic anatomy of tremor in Parkinson’s disease. Neurology 51: 803–810 (1998).Google Scholar
  91. 91.
    Moeller J. R., Nakamura, T., Mentis, M. J. et al., Reproducibility of regional metabolic covariance patterns: comparison of four populations [In Process Citation]. J Nucl Med 40: 1264–1269 (1999).Google Scholar
  92. 92.
    Links J. M., Special issues in quantitation of brain receptors and related markers by emission computed tomography. Q J Nucl Med 42: 158–165 (1998).Google Scholar
  93. 93.
    Zaidi H. and Sossi, V., Correction for image degrading factors is essential for accurate quantification of brain function using PET. Med Phys 31: 423–426 (2004).Google Scholar
  94. 94.
    Houston A. S., Kemp, P. M. and Macleod, M. A., Optimization of factors affecting the state of normality of a medical image. Phys Med Biol 41: 755–765 (1996).Google Scholar
  95. 95.
    Koyama M., Kawashima, R., Ito, H. et al., SPECT imaging of normal subjects with Technetium-99m-HMPAO and Technetium-99m-ECD. J Nucl Med 38: 587–592 (1997).Google Scholar
  96. 96.
    Jueptner M. and Weiller, C., Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2: 148–156 (1995).Google Scholar
  97. 97.
    Lou H., Edvinsson, L. and MacKenzie, E. T., The concept of coupling blood flow to brain function: revision required? Ann Neurol 22: 289–297 (1987).Google Scholar
  98. 98.
    Waldvogel D., van Gelderen, P., Muellbacher, W. et al., The relative metabolic demand of inhibition and excitation. Nature 406: 995–998 (2000).ADSGoogle Scholar
  99. 99.
    Asenbaum S., Brücke, T., Pirker, W. et al., Imaging of cerebral blood flow with technetium-99m-HMPAO and technetium-99m-ECD: a comparison. J Nucl Med 39: 613–618 (1998).Google Scholar
  100. 100.
    Houston A. S., Kemp, P. M. and Macleod, M. A., A method for assessing the significance of abnormalities in HMPAO brain SPECT images. J Nucl Med 35: 239–244 (1994).Google Scholar
  101. 101.
    Newberg A. B. and Alavi, A., Normal patterns and variants in single-photon emission computed tomography and positron emission tomography brain imaging. Semin Nucl Med 33: 42–55 (2003).Google Scholar
  102. 102.
    Syed G. M., Eagger, S., Toone, B. K. et al., Quantification of regional cerebral blood flow (rCBF) using 99Tcm-HMPAO and SPECT: choice of the reference region. Nucl Med Commun 13: 811–816 (1992).Google Scholar
  103. 103.
    Talbot P. R., Lloyd, J. J., Snowden, J. S. et al., Choice of reference region in the quantification of single-photon emission tomography in primary degenerative dementia. Eur J Nucl Med 21: 503–508 (1994).Google Scholar
  104. 104.
    Carson R. E., Precision and accuracy considerations of physiological quantitation in PET. J Cereb Blood Flow Metab 11: A45–A50 (1991).Google Scholar
  105. 105.
    Tikosfky R. S., Ichise, M., Seibyl, J. P. et al., Functional brain SPECT imaging: 1999 and beyond. Semin Nucl Med 29: 193–238 (1999).Google Scholar
  106. 106.
    Pagani M., Salmaso, D., Jonsson, C. et al., Regional cerebral blood flow as assessed by principal component analysis and (99m)Tc-HMPAO SPET in healthy subjects at rest: normal distribution and effect of age and gender. Eur J Nucl Med Mol Imaging 29: 67–75 (2002).Google Scholar
  107. 107.
    Slosman D. O., Chicherio, C., Ludwig, C. et al., (133)Xe SPECT cerebral blood flow study in a healthy population: determination of T-scores. J Nucl Med 42: 864–870 (2001).Google Scholar
  108. 108.
    Tanaka F., Vines, D., Tsuchida, T. et al., Normal patterns on Tc-99m-ECD brain SPECT scans in adults. J Nucl Med 41: 1456–1464 (2000).Google Scholar
  109. 109.
    Lobaugh N. J., Caldwell, C. B., Black, S. E. et al., Three brain SPECT region-of-interest templates in elderly people: normative values, hemispheric asymmetries, and a comparison of single-and multihead cameras. J Nucl Med 41: 45–56 (2000).Google Scholar
  110. 110.
    Jones K., Johnson, K. A., Becker, J. A. et al., Use of singular value decomposition to characterize age and gender differences in SPECT cerebral perfusion. J Nucl Med 39: 965–973 (1998).Google Scholar
  111. 111.
    Krausz Y., Bonne, O., Gorfine, M. et al., Age-related changes in brain perfusion of normal subjects detected by 99mTc-HMPAO SPECT. Neuroradiology 40: 428–434 (1998).Google Scholar
  112. 112.
    Mozley P. D., Sadek, A. M., Alavi, A. et al., Effects of aging on the cerebral distribution of technetium-99m hexamethylpropylene amine oxime in healthy humans. Eur J Nucl Med 24: 754–761 (1997).Google Scholar
  113. 113.
    Barthel H., Wiener, M., Dannenberg, C. et al., Age-specific cerebral perfusion in 4-to 15-year-old children: a high-resolution SPET study using 99m Tc-ECD. Eur J Nucl Med 24: 1245–1252 (1997).Google Scholar
  114. 114.
    Catafau A. M., Lomena, F. J., Pavia, J. et al., Regional cerebral blood flow pattern in normal young and aged volunteers: a 99m Tc-HMPAO study. Eur J Nucl Med 23: 1329–1337 (1996).Google Scholar
  115. 115.
    Markus H. S., Ring, H., Kouris, K. et al., Alterations in regional cerebral blood flow, with increased temporal interhemispheric asymmetries, in the normal elderly: an HMPAO SPECT study. Nucl Med Commun 14: 628–633 (1993).Google Scholar
  116. 116.
    Matsuda H., Tsuji, S., Shuke, N. et al., Noninvasive measurement of regional cerebral blood flow using technetium-99m hexamethylpropylene amine oxime. Eur J Nucl Med 20: 391–401 (1993).Google Scholar
  117. 117.
    Waldemar G., Hasselbalch, S. G., Andersen, A. R. et al., 99mTc-d,1-HMPAO and SPECT of the brain in normal aging. J Cereb. Blood Flow Metab 11: 508–521 (1991).Google Scholar
  118. 118.
    Rodriguez G., Warkentin, S., Risberg, J. et al., Sex differences in regional cerebral blood flow. J Cereb Blood Flow Metab 8: 783–789 (1988).Google Scholar
  119. 119.
    Herholz K., Salmon, E., Perani, D. et al., Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 17: 302–316 (2002).Google Scholar
  120. 120.
    Willis M. W., Ketter, T. A., Kimbrell, T. A. et al., Age, sex and laterality effects on cerebral glucose metabolism in healthy adults. Psychiatry Res 114: 23–37 (2002).Google Scholar
  121. 121.
    Lee J. S., Lee, D. S., Kwon, J. S. et al., Changes in regional cerebral glucose metabolism with healthy aging. Neuroimage 11: S805 (2000).Google Scholar
  122. 122.
    Volkow N. D., Logan, J., Fowler, J. S. et al., Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. Am J Psychiatry 157: 75–80 (2000).Google Scholar
  123. 123.
    Schultz S. K., O’Leary, D. S., Ponto, L. L. B. et al., Age-related changes in regional cerebral blood flow among young to midlife adults. Neuroreport 10: 2493–2496 (1999).Google Scholar
  124. 124.
    Petit-Taboue M. C., Landeau, B., Desson, J. F. et al., Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping. Neuroimage 7: 176–184 (1998).Google Scholar
  125. 125.
    Murphy D. G., DeCarli, C., McIntosh, A. R. et al., Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. Arch Gen Psychiatry 53: 585–594 (1996).Google Scholar
  126. 126.
    Gur R. C., Mozley, L. H., Mozley, P. D. et al., Sex differences in regional glucose metabolism during the resting state. Science 267: 528–531 (1995).ADSGoogle Scholar
  127. 127.
    Loessner A., Alavi, A., Lewandrowski, K. U. et al., Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. J Nucl Med 36: 1141–1149 (1995).Google Scholar
  128. 128.
    Marchal G., Rioux, P., Petit-Taboue, M. C. et al., Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging. Arch Neurol 49: 1013–1020 (1992).Google Scholar
  129. 129.
    Martin A. J., Friston, K. J., Colebatch, J. G. et al., Decreases in regional cerebral blood flow with normal aging. J. Cereb. Blood Flow Metab 11: 684–689 (1991).Google Scholar
  130. 130.
    Leenders K. L., Perani, D., Lammertsma, A. A. et al., Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113: 27–47 (1990).Google Scholar
  131. 131.
    Yoshii F., Barker, W. W., Chang, J. Y. et al., Sensitivity of cerebral glucose metabolism to age, gender, brain volume, brain atrophy and cerebrovascular risk factors. J Cereb Blood Flow Metab 8: 654–661 (1988).Google Scholar
  132. 132.
    Slageter N. L., Horwitz, B., Creasey, H. et al., Relation of cerebral glucose utilization and cerebral atrophy in man. J Neurol Neurosurg Psy 50: 779–785 (1987).Google Scholar
  133. 133.
    Van Laere K., Koole, M., Versijpt, J. et al., Transfer of normal 99mTc-ECD brain SPET databases between different gamma cameras. Eur J Nucl Med 28: 435–449 (2001).Google Scholar
  134. 134.
    Grady C. L., Berg, G., Carson, R. E. et al., Quantitative comparison of cerebral glucose metabolic rates from two positron emission tomographs. J Nucl Med 30: 1386–1392 (1989).Google Scholar
  135. 135.
    Ribeiro M. J., Remy, P., Bendriem, B. et al., Comparison of clinical data sets acquired on different tomographs using 6-18F-L-dopa. Eur J Nucl Med 27: 707–712 (2000).Google Scholar
  136. 136.
    Nuyts J., Mortelmans, L., Van de, W. F. et al., Cardiac phantom measurement validating the methodology for a cardiac multi-centre trial with positron emission tomography. Eur J Nucl Med Mol Imaging 29: 1588–1593 (2002).Google Scholar
  137. 137.
    OHBM T. G. C. o. t. O. f. H. B. M. O., Neuroimaging databases. Science 292: 1673–1676 (2001).Google Scholar
  138. 138.
    Okamura N., Arai, H., Higuchi, M. et al., [18F]FDG-PET study in dementia with Lewy bodies and Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psy 25: 447–456 (2001).Google Scholar
  139. 139.
    Varrone A., Pappata, S., Caraco, C. et al., Voxel-based comparison of rCBF SPET images in frontotemporal dementia and Alzheimer’s disease highlights the involvement of different cortical networks. Eur J Nucl Med Mol. Imaging 29: 1447–1454 (2002).Google Scholar
  140. 140.
    Staff R. T., Gemmell, H. G., Shanks, M. F. et al., Changes in the rCBF images of patients with Alzheimer’s disease receiving Donepezil therapy. Nucl Med Comm 21: 37–41 (2000).Google Scholar
  141. 141.
    Raichle M., Imaging the mind. Sem Nucl Med 28: 279–289 (1998).Google Scholar
  142. 142.
    Barrington S. F., Clinical use of PET in neurology. Nucl Med Comm 21: 237–240 (2000).Google Scholar
  143. 143.
    Minoshima S., Frey, K. A., Koeppe, R. A. et al., A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 36: 1238–1248 (1995).Google Scholar
  144. 144.
    Silverman D. H., Gambhir, S. S., Huang, H. W. et al., Evaluating early dementia with and without assessment of regional cerebral metabolism by PET: a comparison of predicted costs and benefits. J Nucl Med 43: 253–266 (2002).Google Scholar
  145. 145.
    Jobst K. A., Barnetson, L. P. and Shepstone, B. J., Accurate prediction of histologically confirmed Alzheimer’s disease and the differential diagnosis of dementia: the use of NINCDS-ADRDA and DSM-III-R criteria, SPECT, X-ray CT, and APO E4 medial temporal lobe dementias. The Oxford Project to Investigate Memory and Aging. Int Psychogeriatr 9Suppl 1: 191–222 (1997).Google Scholar
  146. 146.
    Herholz K., Schopphoff, H., Schmidt, M. et al., Direct comparison of spatially normalized PET and SPECT scans in Alzheimer’s disease. J Nucl Med 43: 21–26 (2002).Google Scholar
  147. 147.
    Imran M. B., Kawashima, R., Awata, S. et al., Parametric mapping of cerebral blood flow deficits in Alzheimer’s disease: a SPECT study using HMPAO and image standardization technique. J Nucl Med 40: 244–249 (1999).Google Scholar
  148. 148.
    Soonawala D., Amin, T., Ebmeier, K. P. et al., Statistical parametric mapping of (99m)Tc-HMPAO-SPECT images for the diagnosis of Alzheimer’s disease: normalizing to cerebellar tracer uptake. Neuroimage 17: 1193–1202 (2002).Google Scholar
  149. 149.
    Drzezga A., Arnold, S., Minoshima, S. et al., 18F-FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. J Nucl Med 40: 737–746 (1999).Google Scholar
  150. 150.
    Noachtar S., Arnold, S., Yousry, T. A. et al., Ictal technetium-99m ethyl cysteinate dimer single-photon emission tomographic findings and propagation of epileptic seizure activity in patients with extratemporal epilepsies. Eur J Nucl Med 25: 166–172 (1998).Google Scholar
  151. 151.
    O’Brien T. J., So, E. L., Mullan, B. P. et al., Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 50: 445–454 (1998).Google Scholar
  152. 152.
    Chang D. J., Zubal, I. G., Gottschalk, C. et al., Comparison of statistical parametric mapping and SPECT difference imaging in patients with temporal lobe epilepsy. Epilepsia 43: 68–74 (2002).Google Scholar
  153. 153.
    Lee J. D., Kim, H. J., Lee, B. I. et al., Evaluation of ictal brain SPET using statistical parametric mapping in temporal lobe epilepsy. Eur J Nucl Med 27: 1658–1665 (2000).Google Scholar
  154. 154.
    AAN A. A. o. N. A. A. N., Assessment of brain SPECT. Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 46: 278–285 (1996).Google Scholar
  155. 155.
    Ueda T., Sakaki, S., Yuh, W. T. et al., Outcome in acute stroke with successful intra-arterial thrombolysis and predictive value of initial single-photon emission-computed tomography. J Cereb Blood Flow Metab 19: 99–108 (1999).Google Scholar
  156. 156.
    Umemura A., Suzuka, T. and Yamada, K., Quantitative measurement of cerebral blood flow by 99mTc-HMPAO in acute ischaemic stroke: usefulness in determining therapeutic options. J Neurol Neurosury Psychiatry 69: 472–478 (2000).Google Scholar
  157. 157.
    Ostergaard L., Sorensen, A. G., Chesler, D. A. et al., Combined diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute stroke. Stroke 31: 1097–1103 (2000).Google Scholar
  158. 158.
    Elliott J. P., Newell, D. W., Lam, D. J. et al., Comparison of balloon angioplasty and papaverine infusion for the treatment of vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurgery 88: 277–284 (1998).Google Scholar
  159. 159.
    Ramsay S. C., Yeates, M. G., Lord, R. S. et al., Use of technetium-99m-HMPAO to demonstrate changes in flow reserve following carotid endartrectomy. J Nucl Med 32: 1382–1386 (1991).Google Scholar
  160. 160.
    Cikrit D. F., Dalsing, M. C., Harting, P. S. et al., Cerebral vascular reactivity assessed with acetazolamide single photon emission computer tomography scans before and after carotid endarterectomy. Am J Surg 174: 193–197 (1997).Google Scholar
  161. 161.
    Lang A. E. and Lozano, A. M., Parkinson’s disease. First of two parts. N Engl J Med 339: 1044–1053 (1998).Google Scholar
  162. 162.
    Booij J., Tissingh, G., Winogrodzka, A. et al., Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism. Eur. J. Nucl. Med. 26: 171–182 (1999).Google Scholar
  163. 163.
    Schwarz J., Tatsch, K., Gasser, T. et al., [123]IBZM binding predicts dopaminergic responsiveness in patients with parkinsonism and previous dopaminomimetic therapy. Mov Disord 12: 898–902 (1997).Google Scholar
  164. 164.
    Costa D., Walker, Z., Walker, R. et al., Dementia with Lewy bodies: preliminary data on clinical, pathological and FP-CIT SPECT correlations. Nucl Med Comm 20: 467–468 (1999).Google Scholar
  165. 165.
    Seibyl J. P., Marek, K., Quinlan, D. et al., Decreased 123Ibeta-CIT striatal uptake correlates with symptom severity in idiopathic Parkinson’s disease. Ann Neurol 38: 589–598 (1995).Google Scholar
  166. 166.
    Spetsieris P. G., Moeller, J. R., Dhawan, V. et al., Visualizing the evolution of abnormal metabolic networks in the brain using PET. Comput. Med Imaging Graph 19: 295–306 (1995).Google Scholar
  167. 167.
    Bosman T., Van Laere, K. and Santens, P., Anatomically standardised (99m)Tc-ECD brain perfusion SPET allows accurate differentiation between healthy volunteers, multiple system atrophy and idiopathic Parkinson’s disease. Eur J Nucl Med Mol Imaging 30: 16–24 (2003).Google Scholar
  168. 168.
    Hosaka K., Ishii, K., Sakamoto, S. et al., Voxel-based comparison of regional cerebral glucose metabolism between PSP and corticobasal degeneration. J Neurol Sci 199: 67–71 (2002).Google Scholar
  169. 169.
    Weber W., Bartenstein, P., Gross, M. W. et al., Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med 38: 802–808 (1997).Google Scholar
  170. 170.
    Bartenstein P., Grünwald, F., Kuwert, T. et al., Clinical applications of single photon emission tomography in neuromedicine. Part 1: Neuro-oncology, epilepsy, movement disorders, cerebrovascular disease. Nuklearmedizin 39: 180–195 (2000).Google Scholar
  171. 171.
    Jacobs A., Put, E., Ingels, M. et al., One-year follow-up of technetium-99m-HMPAO SPECT in mild head injury. J Nucl Med 37: 1609 (1996).Google Scholar
  172. 172.
    Ichise M., Chung, D. G., Wang, P. et al., Technetium-99m-HMPAO SPECT, CT and MRI in the evaluation of patients with chronic traumatic brain injury: a correlation with neuropsychological performance. J Nucl Med 35: 217–226 (1994).Google Scholar
  173. 173.
    Stamatakis E. A., Wilson, J. T., Hadley, D. M. et al., SPECT imaging in head injury interpreted with statistical parametric mapping. J Nucl Med 43: 476–483 (2002).Google Scholar
  174. 174.
    Holman L. B. and Devous, M. D., Functional brain SPECT: the emergence of a powerful clinical method. J Nucl Med 33: 1888–1904 (1995).Google Scholar
  175. 175.
    Goodwin M. A., Functional imaging, affective disorder and dementia. Br Med Bull 1996: 495–512 (1996).Google Scholar
  176. 176.
    Laruelle M., Abi-Dargham, A., Gil, R. et al., Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatr 46: 56–72 (1999).Google Scholar
  177. 177.
    Busatto G. F., Zamignani, D. R., Buchpiguel, C. A. et al., A voxel-based investigation of regional cerebral blood flow abnormalities in obsessive-compulsive disorder using single photon emission computed tomography (SPECT). Psychiatry Res 99: 15–27 (2000).Google Scholar
  178. 178.
    Bonne O., Louzoun, Y., Aharon, I. et al., Cerebral blood flow in depressed patients: a methodological comparison of statistical parametric mapping and region of interest analyses. Psychiatry Res 122: 49–57 (2003).Google Scholar
  179. 179.
    Siessmeier T., Nix, W. A., Hardt, J. et al., Observer independent analysis of cerebral glucose metabolism in patients with chronic fatigue syndrome. J Neurol Neurosurg Psy 74: 922–928 (2003).Google Scholar
  180. 180.
    Imran M. B., Kawashima, R., Sato, K. et al., Detection of CBF deficits in neuropsychiatric disorders by an expert system: a 99Tcm-HMPAO brain SPET study using automated image registration. Nucl Med Commun 20: 25–32 (1999).Google Scholar
  181. 181.
    Moresco F. M., Dieci, M., Vita, A. et al., In vivo serotonin 5HT(2A) receptor binding and personality traits in healthy subjects: a positron emission tomography study. Neuroimage 17: 1470–1478 (2002).Google Scholar
  182. 182.
    Turner R. S., Grafton, S. T., McIntosh, A. R. et al., The functional anatomy of parkinsonian bradykinesia. Neuroimage 19: 163–179 (2003).Google Scholar
  183. 183.
    Price B. H., Adams, R. D. and Coyle, J. T., Neurology and psychiatry. Closing the great divide. Neurology 54: 8–14 (2000).Google Scholar
  184. 184.
    Fujita M. and Innis, R. B., Nuclear psychiatry: specialty for the twenty-first century? Eur J Nucl Med 27(Suppl): S39–S42 (2000).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • K. Van Laere
    • 1
  • H. Zaidi
    • 2
  1. 1.Division of Nuclear MedicineLeuven University HospitalLeuvenBelgium
  2. 2.Division of Nuclear MedicineGeneva University HospitalGenevaSwitzerland

Personalised recommendations