Tracer Kinetic Modeling in Nuclear Medicine: Theory and Applications

  • M. Bentourkia
  • H. Zaidi

7. Summary

This chapter has presented the basic principles and clinical and research applications of the kinetic modeling approach, which can be applied to various dynamic data acquired by planar scintigraphy, SPECT or PET. Two main difficulties can arise when selecting a particular compartmental model: when the number of identifiable components is less than the chosen model (e.g. high noise) or more than the chosen model (e.g. heterogeneity). Different strategies have been suggested to tackle these problems.

The analyses presented above and concerning 18F-FDG and 13N-ammonia are not new per se but the aims was to present typical applications and expose some effects which affect PET data quantitation. It should be emphasized that in research settings, there are differences in reported values for the same parameters in the same category of studies, because the protocols of measurements and procedures of image reconstruction and data analysis are different (see chapters 4 and 7).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lawson R. S., Application of mathematical methods in dynamic nuclear medicine studies. Phys Med Biol 44: R57–98 (1999).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Gunn R. N., Gunn, S. R., Turkheimer, F. E. et al., Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling. J Cereb Blood Flow Metab 22: 1425–1439 (2002).CrossRefGoogle Scholar
  3. 3.
    Sokoloff L., Reivich, M., Kennedy, C. et al., The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916 (1977).CrossRefGoogle Scholar
  4. 4.
    Phelps M. E., Huang, S. C., Hoffman, E. J. et al., Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6: 371–388 (1979).CrossRefGoogle Scholar
  5. 5.
    Mintun M. A., Raichle, M. E., Kilbourn, M. R. et al., A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15: 217–227 (1984).CrossRefGoogle Scholar
  6. 6.
    Gunn R. N., Gunn, S. R. and Cunningham, V. J., Positron emission tomography compartmental models. J Cereb Blood Flow Metab 21: 635–652 (2001).CrossRefGoogle Scholar
  7. 7.
    Gjedde A., Calculation of cerebral glucose phosphorylation from brain uptake of glucose analogs in vivo: A re-examination. Brain Res Rev 4: 237–274 (1982).CrossRefGoogle Scholar
  8. 8.
    Patlak C. S., Blasberg, R. G. and Fenstermacher, J. D., Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3: 1–7 (1983).Google Scholar
  9. 9.
    Cunningham V. and Jones, T., Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab 13: 15–23 (1993).Google Scholar
  10. 10.
    Logan J., Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 27: 661–670 (2000).CrossRefGoogle Scholar
  11. 11.
    Schmidt K. C. and Turkheimer, F. E., Kinetic modeling in positron emission tomography. Q J Nucl Med 46: 70–85 (2002).Google Scholar
  12. 12.
    Carson R., “Tracer kinetic modeling in PET” in: Positron Emission Tomography: Basic Science and Clinical Practice., edited by P E Valk, D L Bailey, D W Townsend et al. Springer-Verlag, London, (2003), pp 147–179.Google Scholar
  13. 13.
    Morris E., Endres, C., Schmidt, K. et al., “Kinetic Modeling in PET” in: Emission Tomography: The Fundamentals of PET and SPECT., edited by M Wernick and J Aarsvold Academic Press, San Diego, (2004), in press Google Scholar
  14. 14.
    Schwaiger M., Cardiac Positron Emission Tomography, Kluwer Academic Publisher, Boston, (1996).Google Scholar
  15. 15.
    Silverman D. and Phelps, M., Application of positron emission tomography for evaluation of metabolism and blood flow in human brain: normal development, aging, dementia, and stroke. Mol Genet Metab 74: 128–138 (2001).CrossRefGoogle Scholar
  16. 16.
    Mazière B. and Mazière, M., Where have we got to with neuroreceptor mapping of the human brain? Eur J Nucl Med 16: 817–835 (1990).CrossRefGoogle Scholar
  17. 17.
    Delforge J., Syrota, A., Lançon, J. et al., Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177, and a new graphical method. J Nucl Med 32: 739–748 Erratum in: J Nucl Med. 1994 May;35(5):921 (1991).Google Scholar
  18. 18.
    Eary J., PET imaging for planning cancer therapy. J Nucl Med 42: 770–771 (2001).Google Scholar
  19. 19.
    Bradley J. D., Perez, C. A., Dehdashti, F. et al., Implementing biologic target volumes in radiation treatment planning for non-small cell lung cancer. J Nucl Med 45: 96S–101 (2004).Google Scholar
  20. 20.
    Freedman M. T. N., Sundaram, S. K., Kurdziel, K. et al., Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Eur J Nucl Med Mol Imaging 30: 46–53 (2003).CrossRefGoogle Scholar
  21. 21.
    Chatziioannou A. F., Molecular imaging of small animals with dedicated PET tomographs. Eur J Nucl Med Mol Imaging 29: 98–114 (2002).CrossRefGoogle Scholar
  22. 22.
    Del Guerra A. and Belcari, N., Advances in animal PET scanners. Q J Nucl Med 46: 35–47 (2002).Google Scholar
  23. 23.
    Gambhir S. S., Barrio, J. R., Herschman, H. R. et al., Imaging gene expression: principles and assays. J Nucl Cardiol 6: 219–233 (1999).CrossRefGoogle Scholar
  24. 24.
    Haberkorn U. and Altmann, A., Functional genomics and radioisotope-based imaging procedures. Ann Med 35: 370–379 (2003).CrossRefGoogle Scholar
  25. 25.
    Phelps M. E., PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41: 661–681 (2000).Google Scholar
  26. 26.
    Cherry S., In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol 49: R13–R48 (2004).ADSCrossRefGoogle Scholar
  27. 27.
    Strauss H. W., Grewal, R. K. and Pandit_Taskar, N., Molecular imaging in nuclear cardiology. Semin Nucl Med 34: 47–55 (2004).CrossRefGoogle Scholar
  28. 28.
    Zierler K., Whole body glucose metabolism. Am J Physiol 276: E409–426 (1999).Google Scholar
  29. 29.
    Bailey D. and Jones, T., A method for calibrating three-dimensional positron emission tomography without scatter correction. Eur J Nucl Med 24: 660–664 (1997).Google Scholar
  30. 30.
    Bentourkia M., Bol, A., Ivanoiu, A. et al., A standardized blood sampling scheme in quantitative FDG-PET studies. IEEE Trans Med Imaging 18: 379–384 (1999).CrossRefGoogle Scholar
  31. 31.
    Reivich M., Alavi, A., Wolf, A. et al., Glucose metabolic rate kinetic model parameter determination in humans: the lumped constant and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metabol 5: 179–192 (1985).Google Scholar
  32. 32.
    Wienhard K., The FDG model and its application in clinical PET studies. Neural Transm Suppl 37: 39–52 (1992).Google Scholar
  33. 33.
    Schmidt K., Lucignani, G. and Sokoloff, L., Fluorine-18-fluorodeoxyglucose PET to determine regional cerebral glucose utilization: a re-examination. J Nucl Med 37: 394–399 (1996).Google Scholar
  34. 34.
    Mori K., Schmidt, K., Jay, T. et al., Optimal duration of experimental period in measurement of local cerebral glucose utilization with the deoxyglucose method. J Neurochem 54: 307–319 (1990).CrossRefGoogle Scholar
  35. 35.
    Levenberg K., A method for the solution of certain problems in least squares. Quart Appl Mat 2: 164–168 (1944).MATHMathSciNetGoogle Scholar
  36. 36.
    Marquardt D., An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11: 431–441 (1963).MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Bentourkia M., Bol, A., Ivanoiu, A. et al., Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci 181: 19–28 (2000).CrossRefGoogle Scholar
  38. 38.
    Gjedde A., Wienhard, K., Heiss, W. et al., Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metab 5: 163–178 (1985).Google Scholar
  39. 39.
    Wienhard K., Pawlik, G., Herholz, K. et al., Estimation of local cerebral glucose utilization by positron emission tomography of [18F]2-fluoro-2-deoxy-D-glucose: a critical appraisal of optimization procedures. J Cereb Blood Flow Metab 5: 115–125 (1985).Google Scholar
  40. 40.
    Hutchins G., Holden, J., Koeppe, R. et al., Alternative approach to single-scan estimation of cerebral glucose metabolic rate using glucose analogs, with particular application to ischemia. J Cereb Blood Flow Metab 4: 35–40 (1984).Google Scholar
  41. 41.
    Lammertsma A. A., Brooks, D. J., Frackowiak, R. S. et al., Measurement of glucose utilisation with [18F]2-fluoro-2-deoxy-D-glucose: a comparison of different analytical methods. J Cereb Blood Flow Metab 7: 161–172 (1987).Google Scholar
  42. 42.
    Bergmann S., Fox, K., Rand, A. et al., Quantification of regional myocardial blood flow in vivo with H215O. Circulation 70: 724–733 (1984).Google Scholar
  43. 43.
    Schelbert H. and Czernin, J., Noninvasive quantification of regional myocardial blood flow: assessment of myocardial perfusion reserve and collateral circulation. J Nucl Med 31: 271–273 (1990).Google Scholar
  44. 44.
    Therien A. G. and Blostein, R., Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 279: C541–566 (2000).Google Scholar
  45. 45.
    Krivokapich J., Huang, S. C., Phelps, M. E. et al., Dependence of 13NH3 myocardial extraction and clearance on flow and metabolism. Am J Physiol 242: H536–542 (1982).Google Scholar
  46. 46.
    Hutchins G. D., Schwaiger, M., Rosenspire, K. C. et al., Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 15: 1032–1042 (1990).CrossRefGoogle Scholar
  47. 47.
    Bergmann S. R., Herrero, P., Markham, J. et al., Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 14: 639–652 (1989).CrossRefGoogle Scholar
  48. 48.
    Muzik O., Beanlands, R. S., Hutchins, G. D. et al., Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 34: 83–91 (1993).Google Scholar
  49. 49.
    Rosenspire K. C., Schwaiger, M., Mangner, T. J. et al., Metabolic fate of [13N]ammonia in human and canine blood. J Nucl Med 31: 163–167 (1990).Google Scholar
  50. 50.
    Czernin J., Porenta, G., Brunken, R. et al., Regional blood flow, oxidative metabolism, and glucose utilization in patients with recent myocardial infarction. Circulation 88: 884–895 (1993).Google Scholar
  51. 51.
    Kofoed K., Hove, J., Freiberg, J. et al., Relationship between regional 18F-fluorodeoxyglucose and 13N ammonia uptake in normal myocardium assessed by positron emission tomography: patterns of mismatch and effects of aging. Int J Cardiovasc Imaging 17: 361–370 (2001).CrossRefGoogle Scholar
  52. 52.
    Mesotten L., Maes, A., Herregods, M. C. et al., PET “reversed mismatch pattern” early after acute myocardial infarction: follow-up of flow, metabolism and function. Eur J Nucl Med 28: 466–471 (2001).CrossRefGoogle Scholar
  53. 53.
    Bentourkia M., Croteau, E., Langlois, R. et al., Cardiac studies in rats with 11C-acetate and PET: a comparison with 13N-ammonia. IEEE Trans Nucl Sci 49: 2322–2327 (2002).CrossRefADSGoogle Scholar
  54. 54.
    Di Paola R., Bazin, J. P., Aubry, F. et al., Handling of dynamic sequences in nuclear medicine. IEEE Trans Nucl Sci 29: 1310–1321 (1982).CrossRefADSGoogle Scholar
  55. 55.
    Bentourkia M., Lapointe, D., Selivanov, V. et al., “Determination of blood curve and tissue uptake from left ventricle using FADS in rat FDG-PET studies.” IEEE Nuclear Science Symposium and Medical Imaging Conference Record, 24–30 October 1999 Seattle, WA USA, Vol. 2; pp 1124–1127 (1999).Google Scholar
  56. 56.
    Bentourkia M., Msaki, P., Cadorette, J. et al., Nonstationary scatter subtraction-restoration in high-resolution PET. J Nucl Med 37: 2040–2046 (1996).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. Bentourkia
    • 1
  • H. Zaidi
    • 2
  1. 1.Dept. of Nuclear Medicine and RadiobiologyCanada
  2. 2.Division of Nuclear MedicineGeneva University HospitalGenevaSwitzerland

Personalised recommendations