Monte Carlo Modeling in Nuclear Medicine Imaging

  • H. Zaidi

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreo A., Monte Carlo techniques in medical radiation physics. Phys Med Biol 36: 861–920 (1991).Google Scholar
  2. 2.
    Zaidi H., Relevance of accurate Monte Carlo modeling in nuclear medical imaging. Med Phys 26: 574–608 (1999).Google Scholar
  3. 3.
    Ljungberg M., Strand, S.-E. and King, M. A., Monte Carlo calculations in nuclear medicine: Applications in diagnostic imaging, IOP Publishing, Bristol, (1998).Google Scholar
  4. 4.
    Zaidi H. and Sgouros, G., Therapeutic applications of Monte Carlo calculations in nuclear medicine, Institute of Physics Publishing, Bristol, (2002).Google Scholar
  5. 5.
    Zaidi H., “Monte Carlo techniques in diagnostic and therapeutic nuclear medicine” Proc. of the International Symposium on Standards and Codes of Practice in Medical Radiation Dosimetry. ISBN 92-0-111403-6, Vienna (Austria), 25–28 November 2002, Vol. 868; pp 29–44 (2002).Google Scholar
  6. 6.
    Schulz A. G., Knowles, L. G., Kohlenstein, L. C. et al., Quantitative assessment of scanning-system parameters. J Nucl Med 11: 61–68 (1970).Google Scholar
  7. 7.
    Dye R. E. A., Simulation of clinical scintigrams for nuclear medicine imaging devices. Phys Med Biol 33: 1329–1334 (1988).MathSciNetGoogle Scholar
  8. 8.
    Gantet P., Esquerre, J. P., Danet, B. et al., A simulation method for studying scintillation camera collimators. Phys Med Biol 35: 659–669 (1990).Google Scholar
  9. 9.
    Beekman F. J. and Viergever, M. A., Fast SPECT simulation including object shape dependent scatter. IEEE Trans Med Imaging 14: 271–282 (1995).Google Scholar
  10. 10.
    Fleming J. S., Evaluation of a technique for simulation of gamma camera images. Phys Med Biol 41: 1855–1861 (1996).Google Scholar
  11. 11.
    Nelson W. R., Hirayama, H. and Rogers, D. W. O., The EGS4 code system. Stanford Linear Accelerator Center; Report SLAC-256, 1985.Google Scholar
  12. 12.
    Kawrakow I., Mainegra-Hing, E. and Rogers, D. W. O., The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport Ionizing Radiation Standards, National Research Council of Canada; 2003.Google Scholar
  13. 13.
    Del Guerra A. and Nelson, W. R., “Positron emission tomography applications of EGS” in: Monte Carlo transport of electrons and photons, edited by Nelson W. R. and Rindi A. Jenkins T M Plenum Publishing Corporation, New York, (1988), pp 469–484.Google Scholar
  14. 14.
    Bollini D., Del Guerra, A., Di Domenico, G. et al., Sub-millimeter planar imaging with positron emitters: EGS4 code simulation and experimental results. IEEE Trans Nucl Sci 44: 1499–1502 (1997).ADSGoogle Scholar
  15. 15.
    Castiglioni I., Cremonesi, O., Gilardi, M. C. et al., Scatter correction techniques in 3D PET: a Monte Carlo evaluation. IEEE Trans Nucl Sci 46: 2053–2058 (1999).ADSGoogle Scholar
  16. 16.
    Castiglioni I., Cremonesi, O., Gilardi, M.-C. et al., A Monte Carlo model of noise components in 3D PET. IEEE Trans Nucl Sci 49: 2297–2303 (2002).ADSGoogle Scholar
  17. 17.
    Adam L. E., Karp, J. S. and Brix, G., Investigation of scattered radiation in 3D whole-body positron emission tomography using Monte Carlo simulations. Phys Med Biol 44: 2879–2895 (1999).Google Scholar
  18. 18.
    Adam L. E., Karp, J. S. and Freifelder, R., Energy-based scatter correction for 3-D PET scanners using NaI(T1) detectors. IEEE Trans Med Imaging 19: 513–521 (2000).Google Scholar
  19. 19.
    Narita Y., Eberl, S., Iida, H. et al., Monte Carlo and experimental evaluation of accuracy and noise properties of two scatter correction methods for SPECT. Phys Med Biol 41: 2481–2496 (1996).Google Scholar
  20. 20.
    Narita Y., Iida, H., Eberl, S. et al., Monte Carlo evaluation of accuracy and noise properties of two scatter correction methods for 201Tl cardiac SPECT. IEEE Trans Nucl Sci 44: 2465–2472 (1997).ADSGoogle Scholar
  21. 21.
    Motta A., Righi, S., Guerra, A. D. et al., A full Monte Carlo simulation of the YAP-PEM prototype for breast tumor detection. Nucl Instr Meth A 527: 201–205 (2004).ADSGoogle Scholar
  22. 22.
    Conti M., Casey, M. E., Eriksson, L. et al., Benchmarking a Monte Carlo simulation code on a prototype LSO scanner. IEEE Trans Nucl Sci 49: 644–648 (2002).ADSGoogle Scholar
  23. 23.
    Halbleib J. A., Kensek, R. P., Valdez, G. D. et al., ITS: The Integrated TIGER Series of electron/photon transport codes-version 3.0. IEEE Trans Nucl Sci 39: 1025–1030 (1992).ADSGoogle Scholar
  24. 24.
    Briesmeister J. F., MCNP-A general Monte Carlo N-particle transport code. version 4C. Los Alamos National Laboratory, NM; Report LA-13709-M, 2000.Google Scholar
  25. 25.
    Hendricks J. S., McKinney, G. W., Waters, L. S. et al., MCNPX, VERSION 2.5.e. Los Alamos National Laboratory, NM; Report LA-UR-04-0569, 2004.Google Scholar
  26. 26.
    Yanch J. C., Dobrzeniecki, A. B., Ramanathan, C. et al., Physically realistic Monte Carlo simulation of source, collimator and tomographic data acquisition for emission computed tomography. Phys Med Biol 37: 853–870 (1992).Google Scholar
  27. 27.
    Yanch J. C. and Dobrzeniecki, A. B., Monte Carlo simulation in SPECT: Complete 3-D modeling of source, collimator and tomographic data acquisition. IEEE Trans Nucl Sci 40: 198–203 (1993).ADSGoogle Scholar
  28. 28.
    Du Y., Frey, E. C., Wang, W. T. et al., Combination of MCNP and SimSET for Monte Carlo simulation of SPECT with medium-and high-energy photons. IEEE Trans Nucl Sci 49: 668–674 (2002).ADSGoogle Scholar
  29. 29.
    Song T. Y., Choi, Y., Chung, Y. H. et al., Optimization of pinhole collimator for small animal SPECT using Monte Carlo simulation. IEEE Trans Nucl Sci 50: 327–332 (2003).ADSGoogle Scholar
  30. 30.
    Brun R., Bruyant, F., Maire, M. et al., GEANT detector description and simulation tool. CERN; Report DD/EE/84-1, 1994.Google Scholar
  31. 31.
    Agostinelli S., Allison, J., Amako, K. et al., GEANT4-a simulation toolkit. Nucl Instrum Methods A 506: 250–303 (2003).ADSGoogle Scholar
  32. 32.
    Michel C., Bol, A., Spinks, T. et al., Assessment of response function in two PET scanners with and without interplane septa. IEEE Trans Med Imaging 10: 240–248 (1991).Google Scholar
  33. 33.
    Wegmann K., Adam, L.-E., Livieratos, L. et al., Investigation of the scatter contribution in single photon transmission measurements by means of Monte Carlo simulations. IEEE Trans Nucl Sci 46: 1184–1190 (1999).ADSGoogle Scholar
  34. 34.
    Jan S., Santin, G., Strul, D. et al., GATE: a simulation toolkit for PET and SPECT. Phys Med Biol 49: 4543–4561 (2004).Google Scholar
  35. 35.
    Sempau J., Acosta, E., Baro, J. et al., An algorithm for Monte Carlo simulation of the coupled electron-photon transport. Nucl Instr Meth B 132: 377–390 (1997).ADSGoogle Scholar
  36. 36.
    Salvat F., Fernandez-Varea, J., Costa, E. et al., PENELOPE-A Code System for Monte Carlo Simulation of Electron and Photon Transport, Workshop Proceedings, Issy-les-Moulineaux, France, 5–7 November 2001.Google Scholar
  37. 37.
    Cot A., Sempau, J., Pareto, D. et al., Evaluation of the geometric, scatter, and septal penetration components in fan-beam collimators using Monte Carlo simulation. IEEE Trans Nucl Sci 49: 12–16 (2002).ADSGoogle Scholar
  38. 38.
    Cot A., Sempau, J., Pareto, D. et al., Study of the point spread function (PSF) for 123I SPECT imaging using Monte Carlo simulation. Phys Med Biol 49: 3125–3136 (2004).Google Scholar
  39. 39.
    Sanchez-Crespo A., Andreo, P. and Larsson, S. A., Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 31: 44–51 (2004).Google Scholar
  40. 40.
    Fasso A., Ferrari, A. and Sala, P. R., “Electron-photon transport in FLUKA: status” in: Proceedings of the Monte Carlo 2000 Conference, edited by A Kling, Barao, F, Nakagawa, M, Tavora, L, Vaz, P Springer-Verlag, Berlin, (2001), pp 159–164.Google Scholar
  41. 41.
    Parodi K. and Enghardt, W., Potential application of PET in quality assurance of proton therapy. Phys Med Biol 45: N151–56 (2000).Google Scholar
  42. 42.
    Tanner R. J., Chartier, J.-L., Siebert, B. R. L. et al., Intercomparison on the usage of computational codes in radiation dosimetry. Radiat Prot Dosimetry 110: 769–780 (2004).Google Scholar
  43. 43.
    Zaidi H., Comparative evaluation of photon cross section libraries for materials of interest in PET Monte Carlo simulations. IEEE Trans Nucl Sci 47: 2722–2735 (2000).ADSGoogle Scholar
  44. 44.
    Dresser M. M. and Knoll, G. F., Results of scattering in radioisotope imaging. IEEE Trans Nucl Sci 20: 266–272 (1973).Google Scholar
  45. 45.
    Beck J. W., Jaszczak, R. J., Coleman, R. E. et al., Analyzing SPECT including scatter and attenuation using sophisticated Monte Carlo modeling methods. IEEE Trans Nucl Sci 29: (1982).Google Scholar
  46. 46.
    Floyd C. E., Jaszczak, R. J., Greer, K. L. et al., Inverse Monte Carlo as a unified reconstruction algorithm for ECT. J Nucl Med 27: 1577–1585 (1986).Google Scholar
  47. 47.
    Keller N. A. and Lupton, J. R., PET detector ring aperture function calculations using Monte Carlo techniques. IEEE Trans Nucl Sci 30: 676–680 (1983).ADSGoogle Scholar
  48. 48.
    Lupton L. R. and Keller, N. A., Performance study of single-slice positron emission tomography scanners by Monte Carlo techniques. IEEE Trans Med Imaging 2: 154–168 (1983).Google Scholar
  49. 49.
    Zaidi H., Scheurer, A. H. and Morel, C., An object-oriented Monte Carlo simulator for 3D cylindrical positron tomographs. Comput Methods Programs Biomed 58: 133–145 (1999).Google Scholar
  50. 50.
    Zaidi H., Labbé, C. and Morel, C., Implementation of an environment for Monte Carlo simulation of fully 3D positron tomography on a high-performance parallel platform. Parallel Comput. 24: 1523–1536 (1998).Google Scholar
  51. 51.
    Harrison R. L., Vannoy, S. D., Haynor, D. R. et al., “Preliminary experience with the photon history generator module for a public-domain simulation system for emission tomography” 1999 Records of IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, pp 1154–1158 (1993).Google Scholar
  52. 52.
    Lewellen T., Harrison, R. L. and Vannoy, S., “The SIMSET program” in: Monte Carlo calculations in nuclear medicine: Applications in diagnostic imaging, edited by M Ljungberg, S-E Strand, and M A King Institute of Physics Publishing, Bristol, (1998), pp 77–92.Google Scholar
  53. 53.
    Ljungberg M. and Strand, S.-E., A Monte Carlo program for the simulation of scintillation camera characteristics. Comput Methods Programs Biomed 29: 257–272 (1989).Google Scholar
  54. 54.
    Ljungberg M., “The SIMIND Monte Carlo program” in: Monte Carlo calculations in nuclear medicine: Applications in diagnostic imaging, edited by M Ljungberg, S-E Strand, and M A King Institute of Physics Publishing, Bristol, (1998), pp 145–163.Google Scholar
  55. 55.
    De Vries D. J., Moore, S. C., Zimmerman, R. E. et al., Development and validation of a Monte Carlo simulation of photon transport in an Anger camera. EEE Trans Med Imaging 9: 430–438 (1990).Google Scholar
  56. 56.
    de Vries D. and Moore, S., “Monte Carlo simulation of photon transport in gamma camera collimators” in: Monte Carlo calculations in nuclear medicine: Applications in diagnostic imaging, edited by M Ljungberg, S-E Strand, and M A King Institute of Physics Publishing, Bristol, (1998), pp 125–144.Google Scholar
  57. 57.
    Smith M. F., Floyd, C. E. and Jaszczak, R. J., A vectorized Monte Carlo code for modeling photon transport in SPECT. Med Phys 20: 1121–1127 (1993).Google Scholar
  58. 58.
    Smith M. F., “Vectorized Monte Carlo code for modelling photon transport in nuclear medicine” in: Monte Carlo calculations in nuclear medicine: Applications in diagnostic imaging, edited by M Ljungberg, S-E Strand, and M A King Institute of Physics Publishing, Bristol, (1998), pp 93–109.Google Scholar
  59. 59.
    Thompson C. J., Cantu, J.-M. and Picard, Y., PETSIM: Monte Carlo program simulation of all sensitivity and resolution parameters of cylindrical positron imaging systems. Phys Med Biol 37: 731–749 (1992).Google Scholar
  60. 60.
    Thompson C. and Picard, Y., “PETSIM: Monte Carlo simulation of positron imaging systems” in: Monte Carlo calculations in nuclear medicine: Applications in diagnostic imaging, edited by M Ljungberg, S-E Strand, and M A King Institute of Physics Publishing, Bristol, (1998), pp 233–248.Google Scholar
  61. 61.
    Reilhac A., Lartizien, C., Costes, N. et al., PET-SORTEO: a Monte Carlo-based simulator with high count rate capabilities. IEEE Trans Nucl Sci 51: 46–52 (2004).ADSGoogle Scholar
  62. 62.
    Buvat I. and Castiglioni, I., Monte Carlo simulations in SPET and PET. Q J Nucl Med 46: 48–61 (2002).Google Scholar
  63. 63.
    Ponisch F., Parodi, K., Hasch, B. G. et al., The modelling of positron emitter production and PET imaging during carbon ion therapy. Phys Med Biol 49: 5217–5232 (2004).Google Scholar
  64. 64.
    Zerby C. D., “A Monte Carlo calculation of the response of gamma-ray scintillation Counters” in: Methods in Computational Physics, edited by Fermbach S Alder B, Rotenberg M New York Academic, (1963), pp 89–134.Google Scholar
  65. 65.
    Derenzo S. E., Monte Carlo calculations of the detection efficiency of NaI(Tl), BGO, CsF, Ge and plastic detectors for 511 keV photons. IEEE Trans Nucl Sci 28: 131–136 (1981).ADSGoogle Scholar
  66. 66.
    Derenzo S. E. and Riles, J. K., Monte Carlo calculations of the optical coupling between bismuth germanate crystals and photomultiplier tubes. IEEE Trans Nucl Sci 29: 191–195 (1982).ADSGoogle Scholar
  67. 67.
    Bottigli U., Guzzardi, R., Mey, M. et al., Monte Carlo simulation and experimental tests on BGO, CsF and NaI(Tl) crystals for positron emission tomography. J Nucl Med Allied Sci 29: 221–227 (1985).Google Scholar
  68. 68.
    Bice A. N., Lewellen, T. K., Miyaoka, R. S. et al., Monte Carlo simulation of BaF2 detectors used in time-of-flight positron emission tomography. IEEE Trans Nucl Sci 37: 696–701 (1990).ADSGoogle Scholar
  69. 69.
    Lopes M. I., Chepel, V., Carvalho, J. C. et al., Performance analysis based on a Monte Carlo simulation of a liquid Xenon PET detector. IEEE Trans Nucl Sci 42: 2298–2302 (1995).ADSGoogle Scholar
  70. 70.
    Binkley P. F., Optimization of scintillation detector timing systems using Monte Carlo analysis. IEEE Trans Nucl Sci 41: 386–393 (1994).ADSGoogle Scholar
  71. 71.
    DeVol T. A., Moses, W. W. and Derenzo, S. E., Monte Carlo optimization of depth-of-interaction resolution in PET crystals. IEEE Trans Nucl Sci 40: 170–174 (1993).ADSGoogle Scholar
  72. 72.
    Comanor K. A., Virador, P. R. G. and Moses, W. W., Algorithms to identify detector Compton scatter in PET modules. IEEE Trans Nucl Sci 43: 2213–2218 (1996).ADSGoogle Scholar
  73. 73.
    Tsang G., Moisan, C. and Rogers, J. G., A simulation to model position encoding multicrystal PET detectors. IEEE Trans Nucl Sci 42: 2236–2243 (1995).ADSGoogle Scholar
  74. 74.
    Moisan C., Rogers, J. G., Buckley, K. R. et al., Design studies of a depth-encoding large aperture PET camera. IEEE Trans Nucl Sci 42: 1041–1050 (1995).ADSGoogle Scholar
  75. 75.
    Cayouette F., Zhang, N. and Thompson, C. J., Monte Carlo simulation using DETECT2000 of a multilayered scintillation block and fit to experimental data. IEEE Trans Nucl Sci 50: 339–343 (2003).ADSGoogle Scholar
  76. 76.
    Eriksson L., Townsend, D., Eriksson, M. et al., Experience with scintillators for PET: towards the fifth generation of PET scanners. Nucl Instr Meth A 525: 242–248 (2004).ADSGoogle Scholar
  77. 77.
    Webb S., Binnie, D. M., Flower, M. A. et al., Monte Carlo modelling of the performance of a rotating slit-collimator for improved planar gamma-camera imaging. Phys Med Biol 37: 1095–1108 (1992).Google Scholar
  78. 78.
    Moore S., de Vries, D., Penney, B. et al., “Design of a collimator for imaging In-111” in: Monte Carlo calculations in nuclear medicine: Applications in diagnostic imaging, edited by M Ljungberg, S-E Strand, and M A King Institute of Physics Publishing, Bristol, (1998), pp 183–193.Google Scholar
  79. 79.
    Kimiaei S., Ljungberg, M. and Larsson, S. A., Evaluation of optimally designed planar-concave collimators in single-photon emission tomography. Eur J Nucl Med 24: 1398–1404 (1997).Google Scholar
  80. 80.
    Thompson C. J., The effect of collimation on single rates in multi-slice PET. IEEE Trans Nucl Sci 36: 1072–1077 (1989).ADSGoogle Scholar
  81. 81.
    Digby W. M., Dahlbom, M. and Hoffman, E. J., Detector, shielding and geometric design factors for a high-resolution PET system. IEEE Trans Nucl Sci 37: 664–670 (1990).ADSGoogle Scholar
  82. 82.
    Groiselle C. J., D’Asseler, Y., Kolthammer, J. A. et al., A Monte Carlo simulation study to evaluate septal spacing using triple-head hybrid PET imaging. IEEE Trans Nucl Sci 50: 1339–1346 (2003).ADSGoogle Scholar
  83. 83.
    Moore S. C., deVries, D. J., Nandram, B. et al., Collimator optimization for lesion detection incorporating prior information about lesion size. Med Phys 22: 703–713 (1995).Google Scholar
  84. 84.
    Pollard K. R., Bice, A. N., Eary, J. F. et al., A method for imaging therapeutic doses of iodine-131 with a clinical gamma camera. J Nucl Med 33: 771–776 (1992).Google Scholar
  85. 85.
    Smith M. F. and Jaszczak, R. J., The effect of gamma ray penetration on angle-dependent sensitivity for pinhole collimation in nuclear medicine. Med Phys 24: 1701–1709 (1997).Google Scholar
  86. 86.
    van der Have F. and Beekman, F. J., Photon penetration and scatter in micropinhole imaging: a Monte Carlo investigation. Phys Med Biol 49: 1369–1386 (2004).Google Scholar
  87. 87.
    Wang H., Jaszczak, R. J. and Coleman, R. E., Monte Carlo modeling of penetration effect for iodine-131 pinhole imaging. IEEE Trans Nucl Sci 43: 3272–3277 (1996).ADSGoogle Scholar
  88. 88.
    Gieles M., de Jong, H. W. and Beekman, F. J., Monte Carlo simulations of pinhole imaging accelerated by kernel-based forced detection. Phys Med Biol 47: 1853–1867 (2002).Google Scholar
  89. 89.
    Thompson C. J., Roney, J. M., Lecomte, R. et al., Dependence of the coincidence aperture function of narrow BGO crystals on crystal shape and light encoding schemes. Phys Med Biol 31: 491–506 (1986).Google Scholar
  90. 90.
    Thompson C. J., The effect of collimation on scatter fraction in multi-slice PET IEEE Trans Nucl Sci 35: 598–602 (1988).ADSGoogle Scholar
  91. 91.
    Bradshaw J., Burnham, C. and Correia, J., Application of Monte Carlo methods to the design of SPECT detector systems. IEEE Trans Nucl Sci 32: 753–757 (1985).ADSGoogle Scholar
  92. 92.
    Heanue J. A., Brown, J. K., Tang, H. R. et al., A bound on the energy resolution required for quantitative SPECT. Med Phys 23: 169–173 (1996).Google Scholar
  93. 93.
    Thompson C. J., The effects of detector material and structure on PET spatial resolution and efficiency. IEEE Trans Nucl Sci 37: 718–724 (1990).ADSGoogle Scholar
  94. 94.
    Dahlbom M., Rosenquist, G., Eriksson, L. et al., A study of the possibility of using multi-slice PET systems for 3D imaging. IEEE Trans Nucl Sci 36: 1066–1071 (1989).ADSGoogle Scholar
  95. 95.
    Moses W. W., Virador, P. R. G., Derenzo, S. E. et al., Design of a high-resolution, high-sensitivity PET camera for human brains and small animals. IEEE Trans Nucl Sci 41: 1487–1491 (1997).ADSGoogle Scholar
  96. 96.
    Braem A., Chamizo Llatas, M., Chesi, E. et al., Novel design of a parallax free Compton enhanced PET scanner. Nucl Instr Meth A 525: 268–274 (2004).ADSGoogle Scholar
  97. 97.
    Schramm N. U., Ebel, G., Engeland, U. et al., High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 50: 315–320 (2003).ADSGoogle Scholar
  98. 98.
    Lazaro D., Buvat, I., Loudos, G. et al., Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging. Phys Med Biol 49: 271–285 (2004).Google Scholar
  99. 99.
    Miyaoka R. S., Dynamic high resolution positron emission imaging of rats. Biomed Sci Instrum 27: 35–42 (1991).MathSciNetGoogle Scholar
  100. 100.
    Pavlopoulos S. and Tzanakos, G., Design and performance evaluation of a high-resolution small animal positron tomograph. IEEE Trans Nucl Sci 43: 3249–3255 (1996).ADSGoogle Scholar
  101. 101.
    Bevilacqua A., Bollini, D., Del Guerra, A. et al., A 3-D Monte Carlo simulation of a small animal positron emission tomograph with millimeter spatial resolution. IEEE Trans Nucl Sci 46: 697–701 (1999).ADSGoogle Scholar
  102. 102.
    Lartizien C., Reilhac, A., Costes, N. et al., Monte Carlo simulation-based design study of a LSO-LuAP small animal PET system. IEEE Trans Nucl Sci 50: 1433–1438 (2003).ADSGoogle Scholar
  103. 103.
    Seidel J., Vaquero, J. J. and Green, M. V., Resolution uniformity and sensitivity of the NIH ATLAS small animal PET scanner: Comparison to simulated LSO scanners without depth-of-interaction capability. IEEE Trans Nucl Sci 50: 1347–1350 (2003).ADSGoogle Scholar
  104. 104.
    Rannou F. R., Kohli, V., Prout, D. L. et al., Investigation of OPET performance using GATE, a Geant4-based simulation software. IEEE Trans Nucl Sci 51: 2713–2717 (2004).ADSGoogle Scholar
  105. 105.
    Vaska P., Woody, C. L., Schlyer, D. J. et al., RatCAP: miniaturized head-mounted PET for conscious rodent brain imaging. IEEE Trans Nucl Sci 51: 2718–2722 (2004).ADSGoogle Scholar
  106. 106.
    Floyd C. E., Jaszczak, R. J. and Coleman, R. E., Inverse Monte Carlo: a unified reconstruction algorithm for SPECT. IEEE Trans Nucl Sci 32: 779–785 (1985).ADSGoogle Scholar
  107. 107.
    Boning G., Pichler, B. J., Rafecas, M. et al., Implementation of Monte Carlo coincident aperture functions in image generation of a high-resolution animal positron tomograph. IEEE Trans Nucl Sci 48: 805–810 (2001).ADSGoogle Scholar
  108. 108.
    Rafecas M., Mosler, B., Dietz, M. et al., Use of a Monte Carlo-based probability matrix for 3-D iterative reconstruction of MADPET-II data. IEEE Trans Nucl Sci 51: 2597–2605 (2004).ADSGoogle Scholar
  109. 109.
    Beekman F. J., de Jong, H. W. A. M. and van Geloven, S., Efficient fully 3-D iterative SPECT reconstruction with monte carlo-based scatter compensation. IEEE Trans Med Imaging 21: 867–877 (2002).Google Scholar
  110. 110.
    Wilson D. W., Tsui, B. M. W. and Barrett, H., Noise properties of the EM algorithm: II. Monte Carlo simulations. Phys Med Biol 39: 847–871 (1994).Google Scholar
  111. 111.
    Wang W. and Gindi, G., Noise analysis of MAP-EM algorithms for emission tomography. Phys Med Biol 42: 2215–2232 (1997).Google Scholar
  112. 112.
    Soares E. J., Glick, S. J. and Hoppin, J. W., Noise characterization of block-iterative reconstruction algorithms: II. Monte Carlo simulations. IEEE Trans Med Imaging 24: 112–121 (2005).Google Scholar
  113. 113.
    Lewellen T. K., Harrison, R. L. and Kohlmyer, S. G., Effect of lower energy threshold on single and multiple scatter distributions in positron volume imaging. IEEE Trans Nucl Sci 46: 1129–1135 (1999).ADSGoogle Scholar
  114. 114.
    Zaidi H., Reconstruction-based estimation of the scatter component in positron emission tomography Ann Nucl Med Sci 14: 161–171 (2001).Google Scholar
  115. 115.
    Laymon C. M., Harrison, R. L., Kohlmyer, S. G. et al., Characterization of single and multiple scatter from matter and activity distributions outside the FOV in 3-D PET. IEEE Trans Nucl Sci 51: 10–15 (2004).ADSGoogle Scholar
  116. 116.
    Ogawa K., Kawamura, Y., Kubo, A. et al., Estimation of scattered photons in gamma ray transmission CT using Monte Carlo simulations. IEEE Trans Nucl Sci 44: 1225–1230 (1997).ADSGoogle Scholar
  117. 117.
    Colijn A. P., Zbijewski, W., Sasov, A. et al., Experimental validation of a rapid Monte Carlo based micro-CT simulator. Phys Med Biol 49: 4321–4333 (2004).Google Scholar
  118. 118.
    Ay M. and Zaidi, H., Development and validation of MCNP4C-based Monte Carlo simulator for fan-and cone-beam x-ray CT. (2005) submitted Google Scholar
  119. 119.
    Ljungberg M., Strand, S.-E., Rajeevan, N. et al., Monte Carlo simulation of transmission studies using a planar source with a parallel collimator and a line source with a fan-beam collimator. IEEE Trans Nucl Sci 41: 1577–1584 (1994).ADSGoogle Scholar
  120. 120.
    de Jong H. W., Wang, W. T., Frey, E. C. et al., Efficient simulation of SPECT down-scatter including photon interactions with crystal and lead. Med Phys 29: 550–560 (2002).Google Scholar
  121. 121.
    Bokulic T., Vastenhouw, B., De Jong, H. et al., Monte Carlo-based down-scatter correction of SPECT attenuation maps. Eur J Nucl Med Mol Imaging 31: 1173–1181 (2004).Google Scholar
  122. 122.
    Gustafsson A., Bake, B., Jacobsson, L. et al., Evaluation of attenuation corrections using Monte Carlo simulated lung SPECT. Phys Med Biol 43: 2325–2336 (1998).Google Scholar
  123. 123.
    Arlig A., Gustafsson, A., Jacobsson, L. et al., Attenuation correction in quantitative SPECT of cerebral blood flow: a Monte Carlo study. Phys Med Biol 45: 3847–3859 (2000).Google Scholar
  124. 124.
    Kojima A., Matsumoto, M., Takahashi, M. et al., Effect of energy resolution on scatter fraction in scintigraphic imaging: Monte Carlo study. Medical Physics 20: 1107–13 (1993).ADSGoogle Scholar
  125. 125.
    Meikle S. R. and Badawi, R. D., “Quantitative Techniques in Positron Emission Tomography” in: Positron Emission Tomography: Basic Science and Clinical Practice, edited by P E Valk, D L Bailey, D W Townsend et al. Springer, London, (2003), pp 115–146.Google Scholar
  126. 126.
    Zaidi H. and Koral, K. F., Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 31: 761–782 (2004).Google Scholar
  127. 127.
    Dewaraja Y. K., Ljungberg, M. and Koral, K. F., Monte Carlo evaluation of object shape effects in iodine-131 SPET tumor activity quantification. Eur J Nucl Med 28: 900–906 (2001).Google Scholar
  128. 128.
    Frouin V., Comtat, C., Reilhac, A. et al., Correction of partial volume effect for PET striatal imaging: fast implementation and study of robustness. J Nucl Med 43: 1715–1726 (2002).Google Scholar
  129. 129.
    Soret M., Koulibaly, P. M., Darcourt, J. et al., Quantitative accuracy of dopaminergic neurotransmission imaging with 123I SPECT. J Nucl Med 44: 1184–1193 (2003).Google Scholar
  130. 130.
    Loevinger R. and Berman, M., MIRD Pamphlet No. 1: A schema for absorbed-dose calculation for biologically distributed radionuclides. J Nucl Med 9: 7–14 (1968).Google Scholar
  131. 131.
    Stabin M. G. and Konijnenberg, M. W., Re-evaluation of absorbed fractions for photons and electrons in spheres of various sizes. J Nucl Med 41: 149–160 (2000).Google Scholar
  132. 132.
    Bice A. N., Links, J. M., Wong, D. F. et al., Absorbed fractions for dose calculations of neuroreceptor PET studies. Eur J Nucl Med 11: 127–131 (1985).Google Scholar
  133. 133.
    Cristy M. and Eckerman, K. F., Specific absorbed fractions of energy at various ages from internal photon sources. I Methods, II one year old, III five year old, IV ten year old, V fifteen year old male and adult female, VI new-born and VII adult male. Oak Ridge National Laboratory; Report ORNL/TM 8381/V1-V7, 1987.Google Scholar
  134. 134.
    Bouchet L. G., Bolch, W. E., Weber, D. A. et al., MIRD Pamphlet No. 15: Radionuclide S values in a revised dosimetric model of the adult head and brain. Medical Internal Radiation Dose. J Nucl Med 40: 62S–101S (1999).Google Scholar
  135. 135.
    Snyder W., Ford, M. R. and Warner, G., Estimates of specific absorbed fractions for photon sources uniformly distributed in various organs of a heterogeneous phantom. Pamphlet No. 5, revised., Society of Nuclear Medicine, New York, (1978).Google Scholar
  136. 136.
    Bolch W. E., Bouchet, L. G., Robertson, J. S. et al., MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions-radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J Nucl Med 40: 11S–36S (1999).Google Scholar
  137. 137.
    Stabin M. G. and Yoriyaz, H., Photon specific absorbed fractions calculated in the trunk of an adult male voxel-based phantom. Health Phys 82: 21–44 (2002).Google Scholar
  138. 138.
    Zubal I. G., Harrell, C. R., Smith, E. O. et al., Computerized 3-dimensional segmented human anatomy. Med Phys 21: 299–302 (1994).Google Scholar
  139. 139.
    Chao T. C. and Xu, X. G., Specific absorbed fractions from the image-based VIP-Man body model and EGS4-VLSI Monte Carlo code: internal electron emitters. Phys Med Biol 46: 901–927 (2001).Google Scholar
  140. 140.
    Chao T.-c. and Xu, X. G., S-values calculated from a tomographic head/brain model for brain imaging. Phys Med Biol 49: 4971–4984 (2004).Google Scholar
  141. 141.
    Bardies M. and Myers, M. J., Computational methods in radionuclide dosimetry. Phys Med Biol 41: 1941–55 (1996).Google Scholar
  142. 142.
    Furhang E. E., Sgouros, G. and Chui, C. S., Radionuclide photon dose kernels for internal emitter dosimetry. Med Phys 23: 759–764 (1996).Google Scholar
  143. 143.
    Leichner P. K., A unified approach to photon and beta particle dosimetry. J Nucl Med 35: 1721–1729 (1994).Google Scholar
  144. 144.
    Sgouros G., Chiu, S., Pentlow, K. S. et al., Three-dimensional dosimetry for radioimmunotherapy treatment planning. J Nucl Med 34: 1595–1601 (1993).Google Scholar
  145. 145.
    Yoriyaz H., Stabin, M. G. and dos Santos, A., Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry. J Nucl Med 42: 662–669 (2001).Google Scholar
  146. 146.
    Ljungberg M., Sjogreen, K., Liu, X. et al., A 3-dimensional absorbed dose calculation method based on quantitative SPECT for radionuclide therapy: evaluation for (131)I using monte carlo simulation. J Nucl Med 43: 1101–1109 (2002).Google Scholar
  147. 147.
    Poston J. W., Bolch, W. and Bouchet, L., “Mathematical models of the human anatomy” in: Therapeutic applications of Monte Carlo calculations in nuclear medicine, edited by H Zaidi and G Sgouros Institute of Physics Publishing, London, (2002), pp 108–132.Google Scholar
  148. 148.
    Peter J., Tornai, M. P. and Jaszczek, R. J., Analytical versus voxelized phantom representation for Monte Carlo simulation in radiological imaging. IEEE Trans Med Imaging 19: 556–564 (2000).Google Scholar
  149. 149.
    Goertzen A. L., Beekman, F. J. and Cherry, S. R., Effect of phantom voxelization in CT simulations. Med Phys 29: 492–498 (2002).Google Scholar
  150. 150.
    Bouchet L. G. and Bolch, W. E., Five pediatric head and brain mathematical models for use in internal dosimetry. J Nucl Med 40: 1327–1336 (1999).Google Scholar
  151. 151.
    Clairand I., Bouchet, L. G., Ricard, M. et al., Improvement of internal dose calculations using mathematical models of different adult heights. Phys Med Biol 45: 2771–2785 (2000).Google Scholar
  152. 152.
    Huh C. and Bolch, W. E., A review of US anthropometric reference data (1971–2000) with comparisons to both stylized and tomographic anatomic models. Phys Med Biol 48: 3411–3429 (2003).Google Scholar
  153. 153.
    Peter J., Gilland, D. R., Jaszczak, R. J. et al., Four-dimensional superquadric-based cardiac phantom for Monte Carlo simulation of radiological imaging systems. IEEE Trans Nucl Sci 46: 2211–2217 (1999).ADSGoogle Scholar
  154. 154.
    Segars W. P., Lalush, D. S. and Tsui, B. M. W., Modeling respiratory mechanics in the MCAT and spline-based MCAT phantoms. IEEE Trans Nucl Sci 48: 89–97 (2001).ADSGoogle Scholar
  155. 155.
    Segars W. P., Tsui, B. M., Frey, E. C. et al., Development of a 4-D digital mouse phantom for molecular imaging research. Mol Imaging Biol 6: 149–159 (2004).Google Scholar
  156. 156.
    Dawson T. W., Caputa, K. and Stuchly, M. A., A comparison of 60 Hz uniform magnetic and electric induction in the human body. Phys Med Biol 42: 2319–2329 (1997).Google Scholar
  157. 157.
    Sjogreen K., Ljungberg, M., Wingardh, K. et al., Registration of emission and transmission whole-body scintillation-camera images. J Nucl Med 42: 1563–1570 (2001).Google Scholar
  158. 158.
    Xu X. G., Chao, T. C. and Bozkurt, A., VIP-Man: an image-based whole-body adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations. Health Phys 78: 476–486 (2000).Google Scholar
  159. 159.
    Spitzer V. M. and Whitlock, D. G., The Visible Human Dataset: the anatomical platform for human simulation. Anat Rec 253: 49–57 (1998).Google Scholar
  160. 160.
    Petoussi-Henss N., Zanki, M., Fill, U. et al., The GSF family of voxel phantoms. Phys Med Biol 47: 89–106 (2002).Google Scholar
  161. 161.
    Nipper J. C., Williams, J. L. and Bolch, W. E., Creation of two tomographic voxel models of paediatric patients in the first year of life. Phys Med Biol 47: 3143–3164 (2002).Google Scholar
  162. 162.
    Shi C., “The development and application of a tomographic model from CT images for internal dose calculation to pregnant woman,” Ph.D dissertation, Rensselaer Polytechnic Institute, 2004.Google Scholar
  163. 163.
    Park J. S., Chung, M. S., Hwang, S. B. et al., Visible Korean Human. Improved serially sectioned images of the entire body. IEEE Trans Med Imaging 24: 352–360 (2005).Google Scholar
  164. 164.
    Caon M., Voxel-based computational models of real human anatomy: a review. Radiat Environ Biophys 42: 229–235 (2004).Google Scholar
  165. 165.
    Zankl M., Veit, R., Williams, G. et al., The construction of computer tomographic phantoms and their application in radiology and radiation protection. Radiation and Environmental Biophysics 27: 153–64 (1988).Google Scholar
  166. 166.
    Zubal I. G. and Harrell, C. R., Voxel-based Monte Carlo calculations of nuclear medicine images and applied variance reduction techniques. Image Vision Computing 10: 342–348 (1992).Google Scholar
  167. 167.
    Jones D. G., A realistic anthropomorphic phantom for calculating organ doses arising from external photon irradiation. Radiat Prot Dosimetry 72: 21–29 (1997).Google Scholar
  168. 168.
    Jones D. G., A realistic anthropomorphic phantom for calculating specific absorbed fractions of energy deposited from internal gamma emitters. Radiat Prot Dosimetry 79: 411–414 (1998).Google Scholar
  169. 169.
    Dimbylow P. J., FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of the human body from 1 MHz to 1 GHz. Phys Med Biol 42: 479–490 (1997).Google Scholar
  170. 170.
    Kramer R., Vieira, J. W., Khoury, H. J. et al., All about MAX: a male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry. Phys Med Biol 48: 1239–1262 (2003).Google Scholar
  171. 171.
    Kramer R., Khoury, H. J., Vieira, J. W. et al., All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry. Phys Med Biol 23: (2004).Google Scholar
  172. 172.
    Petoussi-Henss N. and Zankl, M., Voxel anthropomorphic models as a tool for internal dosimetry. Radiat Prot Dosimetry 79: 415–418 (1998).Google Scholar
  173. 173.
    Zankl M. and Wittmann, A., The adult male voxel model “Golem” segmented from whole-body CT patient data. Radiat Environ Biophys 40: 153–162 (2001).Google Scholar
  174. 174.
    Caon M., Bibbo, G. and Pattison, J., An EGS4-ready tomographic computational model of a 14-year-old female torso for calculating organ doses from CT examinations. Phys Med Biol 44: 2213–2225 (1999).Google Scholar
  175. 175.
    Saito K., Wittmann, A., Koga, S. et al., Construction of a computed tomographic phantom for a Japanese male adult and dose calculation system. Radiat Environ Biophys 40: 69–75 (2001).Google Scholar
  176. 176.
    Kinase S., Zankl, M., Kuwabara, J. et al., “Evaluation of specific absorbed factions in voxel phantoms using Monte Carlo simulation” Proceedings of Radiation Risk Assessment in the 21st Century, EPA/JAERI Workshop, Las Vegas, November 5–7 (2001), pp 118–127 (2001).Google Scholar
  177. 177.
    Sato K., Noguchi, H., Saito, K. et al., “Development of CT voxel phantoms for Japanese” Proceedings of Radiation Risk Assessment in the 21st Century, EPA/JAERI Workshop, Las Vegas, November 5–7 (2001), pp 102–110 (2001).Google Scholar
  178. 178.
    Zankl M., Fill, U., Petoussi-Henss, N. et al., Organ dose conversion coefficients for external photon irradiation of male and female voxel models. Phys Med Biol 47: 2367–2385 (2002).Google Scholar
  179. 179.
    Fill U. A., Zankl, M., Petoussi-Henss, N. et al., Adult female voxel models of different stature and photon conversion coefficients for radiation protection. Health Phys 86: 253–272 (2004).Google Scholar
  180. 180.
    Nagaoka T., Watanabe, S., Sakurai, K. et al., Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry. Phys Med Biol 49: 1–15 (2004).Google Scholar
  181. 181.
    Lee C. and Lee, J., The Korean reference adult male voxel model “KRman” segmented from whole-body MR data and dose conversion coefficients. [abstract] Health Phys 84[Suppl]: S163 (2003).Google Scholar
  182. 182.
    Lee C. and Lee, J., Korean adult male voxel model KORMAN segmented from magnetic resonance images. Med Phys 31: 1017–1022 (2004).Google Scholar
  183. 183.
    Lee C. and Bolch, W., Construction of a tomographic computational model of a 9-mo-old and its Monte Carlo calculation time comparison between the MCNP4C and MCNPX codes. [abstract] Health Phys 84[Suppl]: S259 (2003).Google Scholar
  184. 184.
    Shi C. and Xu, X. G., Development of a 30-week-pregnant female tomographic model from computed tomography (CT) images for Monte Carlo organ dose calculations. Med Phys 31: 2491–2497 (2004).Google Scholar
  185. 185.
    Olsson M. B., Wirestam, R. and Persson, B. R., A computer simulation program for MR imaging: application to RF and static magnetic field imperfections. Magn Reson Med 34: 612–617 (1995).Google Scholar
  186. 186.
    Kwan R. K., Evans, A. C. and Pike, G. B., MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans Med Imaging 18: 1085–97 (1999).Google Scholar
  187. 187.
    Hacklander T., Mertens, H. and Cramer, B. M., [Computer simulation of a clinical magnet resonance tomography scanner for training purposes]. Rofo 176: 1151–1156 (2004).Google Scholar
  188. 188.
    Colijn A. P. and Beekman, F. J., Accelerated simulation of cone beam X-ray scatter projections. IEEE Trans Med Imaging 23: 584–590 (2004).Google Scholar
  189. 189.
    Ay M., Shahriari, M., Sarkar, S. et al., Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C. Phys Med Biol 49: 4897–4917 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • H. Zaidi
    • 1
  1. 1.Division of Nuclear MedicineGeneva University HospitalGenevaSwitzerland

Personalised recommendations