Image Segmentation Techniques in Nuclear Medicine Imaging

  • A. O. Boudraa
  • H. Zaidi

5. Summary

It is gratifying to see in overview the progress that image segmentation has made in the last ten years, from operator-dependent manual delineation of structures, through simple thresholding, the use of classifiers and fuzzy clustering, and more recently atlas-guided approaches incorporating prior information. Recent developments have been enormous particularly in the last ten years, the main opportunities striving towards improving the accuracy, precision, and computational speed through efficient implementation in conjunction with decreasing the amount of operator interaction. The application of medical image segmentation is well established in research environments and is still limited in clinical settings to institutions with advanced physics and extensive computing support. As the above mentioned challenges are met, and experience is gained, implementation of validated techniques in commercial software packages will be useful to attract the interest of the clinical community and increase the popularity of these tools. It is expected that with the availability of computing power in the near future, more complex and ambitious computer intensive segmentation algorithms will become clinically feasible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Suetens P., Bellon, E., Vandermeulen, D. et al., Image segmentation: methods and applications in diagnostic radiology and nuclear medicine. Eur J Radiol 17: 14–21 (1993).CrossRefGoogle Scholar
  2. 2.
    Deklerck R., Cornelis, J. and Bister, M., Segmentation of medical images. Image Vision Comput 11: 1101–1113 (1993).CrossRefGoogle Scholar
  3. 3.
    Pham D. L., Xu, C. and Prince, J. L., A survey of currents methods in medical image segmentation. Ann Rev Biomed Eng 2: 315–337 (2000).MATHCrossRefGoogle Scholar
  4. 4.
    Boudraa A. O., Mallet, J.-J., Besson, J.-E. et al., Left ventricle automated detection method in gated isotopic ventriculography using fuzzy clustering. IEEE Trans Med Imaging 12: 451–465 (1993).CrossRefGoogle Scholar
  5. 5.
    Boudraa A. O., Champier, J., Cinotti, L. et al., Delineation and quantitation of brain lesions by fuzzy clustering in positron emission tomography. Comput Med Imaging Graph 20: 31–41 (1996).CrossRefGoogle Scholar
  6. 6.
    Boudraa A. O., Arzi, M., Sau, J. et al., Automated detection of the left ventricular region in gated nuclear cardiac imaging. IEEE Trans Biomed Eng 43: 430–437 (1996).CrossRefGoogle Scholar
  7. 7.
    Behloul F., Boudraa, A.O., Lelieveldt, B. P. et al., Myocardium extraction in positron emission tomography based on soft computing. Comput Med Imaging Graph 25: 277–286 (2001).CrossRefGoogle Scholar
  8. 8.
    Bezdek J. C., Pattern recognition with fuzzy objective function algorithms, Plenum Press, New York, (1981).MATHGoogle Scholar
  9. 9.
    Zaidi H., Organ volume estimation using SPECT. IEEE Trans Nucl Sci 43: 2174–2182 (1996).CrossRefADSGoogle Scholar
  10. 10.
    Erdi Y. E., Mawlawi, O., Larson, S. M. et al., Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 80: 2505–2509 (1997).CrossRefGoogle Scholar
  11. 11.
    Boudraa A. O., Champier, J., Djebali, M. et al., Analysis of dynamic nuclear cardiac images by covariance function. Comput Med Imaging Graph 23: 181–191 (1999).CrossRefGoogle Scholar
  12. 12.
    Bettinardi V., Pagani, E., Gilardi, M. et al., An automatic classification technique for attenuation correction in positron emission tomography. Eur J Nucl Med 26: 447–458 (1999).CrossRefGoogle Scholar
  13. 13.
    Zaidi H., Diaz-Gomez, M., Boudraa, A. O. et al., Fuzzy clustering-based segmented attenuation correction in whole-body PET imaging. Phys Med Biol 47: 1143–1160 (2002).CrossRefGoogle Scholar
  14. 14.
    Peter J., Freyer, R., Smith, M. et al., Nuclear medicine image segmentation using a connective network. IEEE Trans Nucl Sci 44: 1583–1590 (1997).CrossRefADSGoogle Scholar
  15. 15.
    Clarke L. P., Velthuizen, R. P., Camacho, M. A. et al., MRI segmentation: methods and applications. Magn Reson Imaging 13: 343–368 (1995).CrossRefGoogle Scholar
  16. 16.
    Pal N. R. and Pal, S. K., A review on image segmentation techniques. Pattern Recognition 26: 1277–1294 (1993).CrossRefGoogle Scholar
  17. 17.
    Gonzallez R. C. and Woods, R. E., Digital image processing., Pearson Education International, 2nd edition, Upper Saddle River, NJ, (2002).Google Scholar
  18. 18.
    Canny J. F., A computational approach to edge detection. IEEE Trans Pattern Anal Machine Intell 8: 679–698 (1986).CrossRefGoogle Scholar
  19. 19.
    Albregtsen F., “Non-parametric histogram thresholding methods. Error versus relative object area” Proc. 8th Scandinavian Conf. Image Processing, pp 273–280 (1993).Google Scholar
  20. 20.
    Otsu N., A thresholding selection method from gray-level histograms. IEEE Trans Sys Man Cyber 9: 62–66 (1979).CrossRefGoogle Scholar
  21. 21.
    Reddi S. S., Rudin, S. F. and Keshavan, H. R., An optimal multiple threshold scheme for image segmentation. IEEE Trans Syst Man and Cybern 14: 661–665 (1984).Google Scholar
  22. 22.
    Kittler J. and Illingworth, J., Minimum error thresholding. Patt Recogn 19: 41–47 (1986).CrossRefGoogle Scholar
  23. 23.
    Pun T., A new method for gray-level picture thresholding using the entropy of the histogram. Signal Process 2: 223–237 (1980).ADSCrossRefGoogle Scholar
  24. 24.
    Pun T., Entropic thresholding: a new approach. Comput Graph Image Process 16: 210–239 (1981).CrossRefGoogle Scholar
  25. 25.
    Kapur J. N., Sahoo, P. K. and Wong, A., A new method for gray-level picture thresholding using the entropy of the histogram. Graph Models Imag Proc 29: 273–285 (1985).CrossRefGoogle Scholar
  26. 26.
    Mortelmans L., Nuyts, J., Van Pamel, G. et al., A new thresholding method for volume determination by SPECT. Eur J Nucl Med 12: 284–290 (1986).CrossRefGoogle Scholar
  27. 27.
    Groshar D., Frankel, A., Iosilevsky, G. et al., Quantitation of renal uptake of technetium-99m DMSA using SPECT. J Nucl Med 30: 246–250 (1989).Google Scholar
  28. 28.
    Long D. T., King, M. A. and Sheehan, J., Comparative evaluation of image segmentation methods for volume quantitation in SPECT. Med Phys 19: 483–489 (1992).CrossRefGoogle Scholar
  29. 29.
    Alaamer A. S., Fleming, J. S. and Perring, S., Evaluation of the factors affecting the accuracy and precision of a technique for quantification of volume and activity in SPECT. Nucl Med Commun 15: 758–771 (1994).CrossRefGoogle Scholar
  30. 30.
    Savolainen S., Pohjonen, H., Sipila, O. et al., Segmentation methods for volume determination with 111In/99mTc SPET. Nucl Med Commun 16: 370–377 (1995).CrossRefGoogle Scholar
  31. 31.
    Fleming J. S. and Alaamer, A. S., A rule based method for context sensitive threshold segmentation in SPECT using simulation. Phys Med Biol 43: 2309–2323 (1998).CrossRefGoogle Scholar
  32. 32.
    Wang S. and Haralick, R. M., Automatic multithreshold selection. Comput Vis Graph Imag Process 25: 46–67 (1984).CrossRefGoogle Scholar
  33. 33.
    Carlotto J. M., Histogram analysis using scale-space approach. IEEE Trans Pattern Anal Mach Intell 9: 121–129 (1987).CrossRefGoogle Scholar
  34. 34.
    Papamarkos N. and Gatos, B., A new approach for multithreshold selection. Graph Models Imag Proc 56: 357–370 (1994).CrossRefGoogle Scholar
  35. 35.
    Van Laere K. J., Warwick, J., Versijpt, J. et al., Analysis of clinical brain SPECT data based on anatomic standardization and reference to normal data: an ROC-based comparison of visual, semiquantitative, and voxel-based methods. J Nucl Med 43: 458–469 (2002).Google Scholar
  36. 36.
    Slomka P. J., Hurwitz, G. A., St. Clement, G. et al., Three-dimensional demarcation of perfusion zones corresponding to specific coronary arteries: application for automated interpretation of myocardial SPECT. J Nucl Med 36: 2120–2126 (1995).Google Scholar
  37. 37.
    Skurichina M. and Duin, R. P. W., “Stabilizing classifiers for very small sample sizes” Proc. 13th Int. Conf. Patt. Recogn. Vol. 12; pp 891–896 (1996).CrossRefGoogle Scholar
  38. 38.
    Raudys S. J. and Duin, R. P. W., Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix. Patt Recogn Letters 19: 385–392 (1998).MATHCrossRefGoogle Scholar
  39. 39.
    Hamamoto Y., Fujimoto, Y. and Tomita, S., On the estimation of a covariance matrix in designing Parzen classifiers. Patt Recogn 29: 1751–1759 (1996).CrossRefGoogle Scholar
  40. 40.
    Vapnik V. N., Statistical learning theory, John Wiley & Sons Inc, New York, (1998).MATHGoogle Scholar
  41. 41.
    Stoeckel J., Malandain, G., Migneco, O. et al., “Classification of SPECT images of normal subjects versus images of Alzheimer’s disease patients” in Conf. Proc. Medical Image Computing and Computer-Assisted Intervention (MICCAI’01), Utrecht, The Netherlands, Vol. 2208; pp 666–674 (2001).MATHGoogle Scholar
  42. 42.
    Raudys S. J. and Jain, A. K., Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Trans Patt Anal Mach Intell 13: 252–264 (1991).CrossRefGoogle Scholar
  43. 43.
    Xie X. L. and Beni, G., A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Machine Intell 13: 841–847 (1991).CrossRefGoogle Scholar
  44. 44.
    Pal N. R. and Bezdek, J. C., On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst 3: 370–379 (1995).CrossRefGoogle Scholar
  45. 45.
    Boudraa A. O., Dynamic estimation of number of clusters in data sets. IEEE Electronics Letters 35: 1606–1608 (1999).CrossRefGoogle Scholar
  46. 46.
    Coleman G. B. and Andrews, H. C., Image segmentation by clustering. Proc. IEEE 5: 773–785 (1979).CrossRefGoogle Scholar
  47. 47.
    Dempster A. P., Laird, N. M. and Rubin, D. B., Maximum likelihood estimation from incomplete data via the EM algorithm. J Royal Stat Soc B 39: 1–38 (1977).MATHMathSciNetGoogle Scholar
  48. 48.
    Acton P. D., Pilowsky, L. S., Kung, H. F. et al., Automatic segmentation of dynamic neuroreceptor single-photon emission tomography images using fuzzy clustering. Eur J Nucl Med 26: 581–590 (1999).CrossRefGoogle Scholar
  49. 49.
    Boudraa A. O. and Clarysse, P., “Fast fuzzy grey level image segmentation method” World Congress on Medical Physics and Biomedical Engineering, Nice, France, Vol. 35; pp 686 (1997).Google Scholar
  50. 50.
    Krishnapuram R. and Keller, J. M., A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1: 98–110 (1993).CrossRefGoogle Scholar
  51. 51.
    Beni G. and Liu, X., A least biased fuzzy clustering method. IEEE Trans Pattern Anal Machine Intell 16: 954–960 (1994).CrossRefGoogle Scholar
  52. 52.
    Barni M., Cappellini, V. and Mecocci, A., Comments on “A possibilistic approach to clustering”. IEEE Trans Fuzzy System 4: 393–396 (1996).CrossRefGoogle Scholar
  53. 53.
    Marr D. and Hildreth, E., Theory of edge detection. Proc Roy Soc London 207: 187–217 (1980).ADSCrossRefGoogle Scholar
  54. 54.
    Huertas A. and Medioni, G., Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks. IEEE Trans Patt Anal Mach Intell 8: 651–664 (1986).CrossRefGoogle Scholar
  55. 55.
    Wang C. X., Small, L., Synder, W. E. et al., “Edge gated cardiac nuclear medicine images” 7th IEEE Symposium on computer-based medical systems, Winston-Salem, NC, pp 28–33 (1994).Google Scholar
  56. 56.
    Dai X., Snyder, W. E., Bilbro, G. L. et al., Left-ventricle boundary detection from nuclear medicine images. J Digit Imaging 11: 10–20 (1998).CrossRefGoogle Scholar
  57. 57.
    Long D. T., King, M. A. and Gennert, M. A., Development of a 3D gradient-based method for volume quantitation in SPECT. IEEE Trans Nucl Sci 38: 748–754 (1991).CrossRefADSGoogle Scholar
  58. 58.
    Hillel P. G. and Hastings, D. L., A three-dimensional second-derivative surface-detection algorithm for volume determination on SPECT images. Phys Med Biol 38: 583–600 (1993).CrossRefGoogle Scholar
  59. 59.
    Nihsimura Y., Katafuchi, T., Hirase, Y. et al., Measurement of left ventricular chamber and myocardial volume in hypertrophic cardiomyopath patients by ECG-gated myocardial perfusion SPECT: Application of newly developed edge-detection algorithm. Jpn J Radiol Technol 58: 1586–1591 (2002).Google Scholar
  60. 60.
    Langleben D. D., Austin, G., Krikorian, G. et al., Interhemispheric asymmetry of regional cerebral blood flow in prepubescent boys with attention deficit hyperactivity disorder. Nucl Med Comm 22: 1333–1340 (2001).CrossRefGoogle Scholar
  61. 61.
    Li S. Z., Markov Random field modeling in computer vision, Springer-Verlag, Tokyo, (1995).Google Scholar
  62. 62.
    Geman S. and Geman, D., Stochastic relaxation, gibbs distributions and the bayesian restoration of images. IEEE Trans Patt Anal Mach Intell 6: 721–741 (1984).MATHCrossRefGoogle Scholar
  63. 63.
    Besag J., On the statistical analysis of dirty pictures. J Royal Stat Soc B 48: 259–302 (1986).MATHMathSciNetGoogle Scholar
  64. 64.
    Derin H. and Elliott, H., Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE Trans Patt Anal Mach Intell 9: 39–55 (1987).CrossRefGoogle Scholar
  65. 65.
    Chen J. L., Gunn, S. R., Nixon, M. S. et al., “Markov random field models for segmentation of PET images” in: Proc. Information Processing in Medical Imaging, edited by and R.M. Leahy M.F. Insana, (2001), pp 468–474.Google Scholar
  66. 66.
    Lin K. P., Chen, T. S., Yao, W. J. et al., “Dynamic PET-FDG image segmentation using Markov Random field method” Proc SPIE Int Soc Opt Eng, Vol. 3338; pp 1198–1204 (1998).ADSGoogle Scholar
  67. 67.
    Mignotte M. and Meunier, J., “Unsupervised restoration of brain SPECT volumes” Vision Interfaces (VI 2000), Montreal, Canada, pp 55–60 (2000).Google Scholar
  68. 68.
    Mignotte M., Meunier, J., Soucy, J. P. et al., “Segmentation and classification of brain SPECT images using 3D MRF and density mixture estimations” 5th World Multi-Conference on Systemics, Cybernetics and Informatics, Concepts and Applications of Systemics and Informatics, Orlando, FL, USA, Vol. 10; pp 239–244 (2001).Google Scholar
  69. 69.
    Lin H. D., Lin, K. P., Chung, B. T. et al., “Using kinetic parameter analysis of dynamic FDOPA-PET for brain tissue classification” Proc SPIE Int Soc Opt Eng, Vol. 4683; pp 436–449 (2002).ADSGoogle Scholar
  70. 70.
    Kohonen T., Self-organization and associative memory, Springer-Verlag, Berlin, (1989).Google Scholar
  71. 71.
    Pao Y. H., Adaptive pattern recognition and neural networks, Addison-Wesley, New York, (1989).MATHGoogle Scholar
  72. 72.
    Eckhorn R., Reitboeck, H. J., Arendt, M. et al., Feature linking via synchronization among distributed assemblies: simulation of results from cat visual cortex. Neural Computation 2: 293–307 (1990).CrossRefGoogle Scholar
  73. 73.
    Hertz J., Krogh, A. and Palmer, R. G., Introduction to the theory of neural computation, Addison-Wesley, New York, (1991).Google Scholar
  74. 74.
    Kosko B., Neural networks and fuzzy systems: A dynamical systems approach to machine intelligence, Prentice-Hall, Englewood Cliffs, New Jersey, (1991).Google Scholar
  75. 75.
    Blanz W. E. and Pal, S. L., Image segmentation using a neural network. Biol. Cybern. 66: 151–158 (1991).CrossRefGoogle Scholar
  76. 76.
    Ghosh A., Pal, N. R. and Pal, S. K., Object background classification using Hopfield type neural network. Int J Pattern Recogn Mach Intell 6: 989–1008 (1992).CrossRefGoogle Scholar
  77. 77.
    Ghosh A., Pal, N. R. and Pal, S. K., Self-organization for object extraction using multilayer neural networks and fuzziness measures. IEEE Trans Fuzzy Syst 1: 54–68 (1993).CrossRefGoogle Scholar
  78. 78.
    Haykin S., Neural networks. A comprehensive foundation, Macmillan, New York, (1994).MATHGoogle Scholar
  79. 79.
    Keller P. E. and McKinnon, A. D., “Segmentation of medical imagery with pulse-coupled neural networks.” Int Joint Conf Neural Networks, Washington, DC, USA, Paper #130, available on CDROM (1999).Google Scholar
  80. 80.
    Behloul F., “Fusion de données TEP-IRM par méthodes neuro-floues pour l’étude de la viabilité du myocarde” Ph.D Thesis, INSA de Lyon, 1999.Google Scholar
  81. 81.
    Behloul F., Lelieveldt, B. P., Boudraa, A.O. et al., Neuro-fuzzy systems for computer-aided myocardial viability assessment. IEEE Trans Med Imaging 20: 1302–1313 (2001).CrossRefGoogle Scholar
  82. 82.
    Musavi M. T., Ahmed, W., Chan, K. H. et al., On the training of radial basis function classifiers. Neural Networks 5: 595–603 (1992).CrossRefGoogle Scholar
  83. 83.
    Hwang Y. S. and Bang, S. Y., An Efficient method to construct a radial basis function neural network classifier. Neural Networks 8: 1495–1503 (1997).CrossRefGoogle Scholar
  84. 84.
    Kang H. B. and Walker, E. L., Characterising and controlling approximation in hierarchical perceptual grouping. Fuzzy Sets Syst 65: 187–223 (1994).CrossRefGoogle Scholar
  85. 85.
    Kosko B., Fuzzy entropy and condition. Inform Sci 40: 165–174 (1989).MathSciNetCrossRefGoogle Scholar
  86. 86.
    Pal N. R. and Pal, S. K., Higher order of fuzzy entropy and hybrid entropy of a set. Inform Sci 61: 211–231 (1992).MATHMathSciNetCrossRefGoogle Scholar
  87. 87.
    Deluca A. and Termini, S., A definition of non probabilistic entropy in the setting of fuzzy set theory. Inform and Control 20: 301–312 (1972).MathSciNetCrossRefGoogle Scholar
  88. 88.
    Kandel A., Fuzzy mathematical technique with applications, Addison-Wesley, New York, (1986).Google Scholar
  89. 89.
    Kass M., Witkin, A. and Terzopoulos, D., Snakes: active contour models. Int J Comput Vision 1: 321–331 (1988).CrossRefGoogle Scholar
  90. 90.
    Leymarie F. and Levine, M. D., Tracking deformable objects in the plane using an active contour model. IEEE Trans Patt Anal Mach Intell 15: 617–634 (1993).CrossRefGoogle Scholar
  91. 91.
    William D. J. and Shash, M., A fast algorithm for active contours and curvature estimation. Image Understanding 55: 14–26 (1992).CrossRefGoogle Scholar
  92. 92.
    Cohen L. D. and Cohen, I., “A finite element method applied to new active contour models and 3D reconstruction from cross-section” Proc. IEEE, 3rd Int. Conf. Computer Vision, Osaka, Japan, pp 587–591 (1990).Google Scholar
  93. 93.
    Amini A. A., Tehrani, S. and Weymouth, T. E., “Using dynamic programming for minimizing the energy of active contours in the presence of hard constraints” Proc. IEEE 2rd Int. Conf. Computer Vision, pp 855–867 (1988).Google Scholar
  94. 94.
    Mykkanen J. M., Juhola, M. and Ruotsalainen, U., Extracting VOIs from brain PET images. Int J Med Inf 58–59: 51–57 (2000).CrossRefGoogle Scholar
  95. 95.
    Lancaster J., Automated labeling of the human brain: A preliminary report on the development and evaluation of a forward-transform method. Hum Brain Mapp 5: 238–242 (1997).CrossRefGoogle Scholar
  96. 96.
    Ashburner J. and Friston, K. J., Nonlinear spatial normalization using basis functions. Hum Brain Mapp 7: 254–266 (1999).CrossRefGoogle Scholar
  97. 97.
    Minoshima S., Koeppe, R. A., Frey, K. A. et al., Anatomic standardization: linear scaling and nonlinear warping of functional brain images. J Nucl Med 35: 1528–1537 (1994).Google Scholar
  98. 98.
    Sandor S. and Leahy, R., Surface-based labeling of cortical anatomy using a deformable atlas. IEEE Trans Med Imaging 16: (1997).Google Scholar
  99. 99.
    Thompson P. and Toga, A. W., Detection, visualization and animation of abnormal anatomic structure with a probabilistic brain atlas based on random vector field transformations. Med Image Analysis 1: 271–294 (1997).CrossRefGoogle Scholar
  100. 100.
    Wong K.-P., Dagan, F., Meikle, S. R. et al., Segmentation of dynamic PET images using cluster analysis. IEEE Trans Nucl Sci 49: 200–207 (2002).CrossRefADSGoogle Scholar
  101. 101.
    O’ Sullivan F., Imaging radiotracer model parameters in PET: A mixture analysis approach. IEEE Trans Med Imaging 12: 399–412 (1993).CrossRefGoogle Scholar
  102. 102.
    Kimura Y., Hsu, H., Toyama, H. et al., Improved signal-to-noise ratio in parametric images by cluster analysis. Neuroimage 9: 554–561 (1999).CrossRefGoogle Scholar
  103. 103.
    Bossuyt A., Deconinck, F., Lepoudre, R. et al., “The temporal Fourier transform applied to functional isotopic imaging” in: Information processing in medical imaging, edited by R Di Paola and E Kahn INSERM 88, Paris, (1979), pp 397–408.Google Scholar
  104. 104.
    Botvinick E., Dunn, R., Frais, M. et al., The phase image: its relationship to patterns of contraction and conduction. Circulation 65: 551–560 (1982).Google Scholar
  105. 105.
    Pavel D., Byrom, E., Lam, W. et al., Detection and quantification of regional wall motion abnormalities using phase analysis of equilibrium gated cardiac studies. Clin Nucl Med 8: 315–321 (1983).CrossRefGoogle Scholar
  106. 106.
    Barber D. C., The use of principal components in the quantitative analysis of gamma camera dynamic studies. Phys Med Biol 25: 283–292 (1980).ADSCrossRefGoogle Scholar
  107. 107.
    Cavailloles F., Bazin, J. P. and Di Paola, R., Factor analysis in gated cardiac studies. J Nucl Med 25: 1067–1079 (1984).Google Scholar
  108. 108.
    Houston A. S. and Sampson, W. F., A quantitative comparison of some FADS methods in renal dynamic studies using simulated and phantom data. Phys Med Biol 42: 199–217 (1997).CrossRefGoogle Scholar
  109. 109.
    Zaidi H. and Sgouros, G., Therapeutic applications of Monte Carlo calculations in nuclear medicine, Institute of Physics Publishing, Bristol, (2002).CrossRefGoogle Scholar
  110. 110.
    Zaidi H., Comparative methods for quantifying thyroid volume using planar imaging and SPECT J Nucl Med 37: 1421–1426 (1996).Google Scholar
  111. 111.
    Erdi Y. E., Wessels, B. W., Loew, M. H. et al., Threshold estimation in single photon emission computed tomography and planar imaging for clinical radio-immunotherapy. Cancer Res 55: 5823s–5826s (1995).Google Scholar
  112. 112.
    Erdi Y. E., Humm, J. L., Imbriaco, M. et al., Quantitative bone metastases analysis based on image segmentation. J Nucl Med 38: 1401–1406 (1997).Google Scholar
  113. 113.
    Sjorgreen K., Ljungberg, M. and Strand, S. E., Parameters influencing volume and activity quantitation in SPECT. Acta Oncol 35: 323–330 (1996).CrossRefGoogle Scholar
  114. 114.
    King M. A., Long, D. T. and Brill, A. B., SPECT volume quantitation: influence of spatial resolution, source size and shape, and voxel size. Med Phys 18: 1016–1024 (1991).CrossRefGoogle Scholar
  115. 115.
    Zhang Y. J., A survey on evaluation methods for image segmentation. Patt Recogn Letters 29: 1335–1346 (1996).CrossRefGoogle Scholar
  116. 116.
    Zaidi H. and Hasegawa, B. H., Determination of the attenuation map in emission tomography. J Nucl Med 44: 291–315 (2003).Google Scholar
  117. 117.
    Pan T.-S., King, M. A., de Vries, D. J. et al., Segmentation of the body and lungs from Compton scatter and photopeak window data in SPECT: a Monte-Carlo investigation. IEEE Trans Med Imaging 15: 13–24 (1996).CrossRefGoogle Scholar
  118. 118.
    Meikle S. R., Dahlbom, M. and Cherry, S. R., Attenuation correction using count-limited transmission data in positron emission tomography. J Nucl Med 34: 143–150 (1993).Google Scholar
  119. 119.
    Xu M., Cutler, P. and Luk, W., An adaptive local threshold segmented attenuation correction method for whole-body PET imaging. IEEE Trans Nucl Sci 43:331–336 (1996).CrossRefADSGoogle Scholar
  120. 120.
    Bilger K., Kupferschlager, J., Muller-Schauenburg, W. et al., Threshold calculation for segmented attenuation correction in PET with histogram fitting. IEEE Trans Nucl Sci 48: 43–50 (2001).CrossRefADSGoogle Scholar
  121. 121.
    Tai Y.-C., Lin, K.-P., Dahlbom, M. et al., A hybrid attenuation correction technique to compensate for lung density in 3-D total body PET. IEEE Trans Nucl Sci 43: 323–330 (1996).CrossRefADSGoogle Scholar
  122. 122.
    Yu S. K. and Nahmias, C., Segmented attenuation correction using artificial neural networks in positron tomography. Phys Med Biol 41: 2189–2206 (1996).CrossRefGoogle Scholar
  123. 123.
    Riddell C., Brigger, P., Carson, R. E. et al., The watershed algorithm: a method to segment noisy PET transmission images. IEEE Trans Nucl Sci 46: 713–719 (1999).CrossRefADSGoogle Scholar
  124. 124.
    Anderson J. M. M., Srinivasan, R., Mair, B. A. et al., Hidden Markov model based attenuation correction for positron emission tomography. IEEE Trans Nucl Sci 49: 2103–2111 (2002).CrossRefADSGoogle Scholar
  125. 125.
    Zaidi H., Montandon, M.-L. and Slosman, D. O., Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 30: 937–948 (2003).CrossRefGoogle Scholar
  126. 126.
    Dogdas B., Shattuck, D. W. and Leahy, R. M., “Segmentation of the skull in 3D human MR images using mathematical morphology” Proceedings of SPIE Medical Imaging Conference, San Diego, USA, Vol. 4684; pp 1553–1562 (2002).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. O. Boudraa
    • 1
  • H. Zaidi
    • 2
  1. 1.Département SignalEcole NavaleBrestFrance
  2. 2.Division of Nuclear MedicineGeneva University HospitalGenevaSwitzerland

Personalised recommendations