Overview of Nuclear Medical Imaging: Physics and Instrumentation

  • H. Zaidi
  • B. H. Hasegawa


Positron Emission Tomography Positron Emission Tomography Scanner Annihilation Photon Small Animal Imaging Scintillation Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jones T., The role of positron emission tomography within the spectrum of medical imaging. Eur J Nucl Med 23: 207–211 (1996).CrossRefGoogle Scholar
  2. 2.
    Anger H., Scintillation camera. Rev Sci Instr 29: 27–33 (1958).CrossRefADSGoogle Scholar
  3. 3.
    Moore S. C., Kouris, K. and Cullum, I., Collimator design for single photon emission tomography. Eur J Nucl Med 19: 138–150 (1992).CrossRefGoogle Scholar
  4. 4.
    Jaszczak R. J., Greer, K. L. and Coleman, R. E., SPECT using a specially designed cone beam collimator. J Nucl Med 29: 1398–1405 (1988).Google Scholar
  5. 5.
    Tsui B. M. and Gullberg, G. T., The geometric transfer function for cone and fan beam collimators. Phys Med Biol 35: 81–93 (1990).CrossRefGoogle Scholar
  6. 6.
    Weber D. A. and Ivanovic, M., Ultra-high-resolution imaging of small animals: implications for preclinical and research studies. J Nucl Cardiol 6: 332–344 (1999).CrossRefGoogle Scholar
  7. 7.
    Green M. V., Seidel, J., Vaquero, J. J. et al., High resolution PET, SPECT and projection imaging in small animals. Comput Med Imaging Graph 25: 79–86 (2001).CrossRefGoogle Scholar
  8. 8.
    MacDonald L. R., Patt, B. E., Iwanczyk, J. S. et al., Pinhole SPECT of mice using the LumaGEM gamma camera. IEEE Trans Nucl Sci 48: 830–836 (2001).CrossRefADSGoogle Scholar
  9. 9.
    Wu M. C., Gao, D. W., Sievers, R. E. et al., Pinhole single-photon emission computed tomography for myocardial perfusion imaging of mice. J Am Coll Cardiol 42: 576–582 (2003).CrossRefGoogle Scholar
  10. 10.
    Beekman F. J. and Vastenhouw, B., Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 49: 4579–4592 (2004).CrossRefGoogle Scholar
  11. 11.
    Kimiaei S. and Larsson, S. A., Optimal design of planar-concave collimators for SPECT-an analytical approach. Phys Med Biol 43: 637–650 (1998).CrossRefGoogle Scholar
  12. 12.
    Beekman F. J., Kamphuis, C., Hutton, B. F. et al., Half-fanbeam collimators combined with scanning point sources for simultaneous emission-transmission imaging. J Nucl Med 39: 1996–2003 (1998).Google Scholar
  13. 13.
    Formiconi A. R., Geometrical response of multihole collimators. Phys Med Biol 43: 3359–3379 (1998).CrossRefGoogle Scholar
  14. 14.
    Webb S., Binnie, D. M., Flower, M. A. et al., Monte Carlo modelling of the performance of a rotating slit-collimator for improved planar gamma-camera imaging. Phys Med Biol 37: 1095–1108 (1992).CrossRefGoogle Scholar
  15. 15.
    Zeng G. L. and Gagnon, D., CdZnTe strip detector SPECT imaging with a slit collimator. Phys Med Biol 49: 2257–2271 (2004).CrossRefGoogle Scholar
  16. 16.
    Lodge M. A., Binnie, D. M., Flower, M. A. et al., The experimental evaluation of a prototype rotating slat collimator for planar gamma camera imaging. Phys Med Biol 40: 427–448 (1995).CrossRefGoogle Scholar
  17. 17.
    Zeng G. L., Gagnon, D., Matthews, C. G. et al., Image reconstruction algorithm for a rotating slat collimator. Med Phys 29: 1406–1412 (2002).CrossRefGoogle Scholar
  18. 18.
    Williams M. B., Goode, A. R., Galbis-Reig, V. et al., Performance of a PSPMT based detector for scintimammography. Phys Med Biol 45: 781–800 (2000).CrossRefGoogle Scholar
  19. 19.
    Loudos G. K., Nikita, K. S., Giokaris, N. D. et al., A 3D high-resolution gamma camera for radiopharmaceutical studies with small animals. Appl Radiat Isot 58: 501–508 (2003).CrossRefGoogle Scholar
  20. 20.
    Singh M. and Horne, C., Use of a germanium detector to optimize scatter correction in SPECT. J Nucl Med 28: 1853–1860 (1987).Google Scholar
  21. 21.
    Mauderli W. and Fitzgerald, L. T., Rotating laminar emission camera with Ge-detector: further developments. Med Phys 14: 1027–1031 (1987).CrossRefGoogle Scholar
  22. 22.
    Darambara D. G. and Todd-Pokropek, A., Solid state detectors in nuclear medicine. Q J Nucl Med 46: 3–7 (2002).Google Scholar
  23. 23.
    Abe A., Takahashi, N., Lee, J. et al., Performance evaluation of a hand-held, semiconductor (CdZnTe)-based gamma camera. Eur J Nucl Med Mol Imaging 30: 805–811 (2003).CrossRefGoogle Scholar
  24. 24.
    Gagnon D., Zeng, G. L., Links, J. M. et al.,“Design considerations for a new solid-state gamma-camera: SOLSTICE” Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference, Oct. 4–10, San Diego, CA, Vol. 2; pp 1156–1160 (2001).Google Scholar
  25. 25.
    Humm J. L., Rosenfeld, A. and Del Guerra, A., From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging 30: 1574–1597 (2003).CrossRefGoogle Scholar
  26. 26.
    Renker D., Properties of avalanche photodiodes for applications in high energy physics, astrophysics and medical imaging. Nucl Instr Meth A 486: 164–169 (2002).CrossRefADSGoogle Scholar
  27. 27.
    Joram C., Large area hybrid photodiodes. Nucl Phys B 78: 407–415 (1999).CrossRefGoogle Scholar
  28. 28.
    Weilhammer P., Silicon-based HPD development: sensors and front ends. Nucl Instr Meth A 446: 289–298 (2000).CrossRefADSGoogle Scholar
  29. 29.
    D’Ambrosio C. and Leutz, H., Hybrid photon detectors. Nucl Instr Meth A 501: 463–498 (2003).CrossRefADSGoogle Scholar
  30. 30.
    Braem A., Chamizo Llatas, M., Chesi, E. et al., Feasibility of a novel design of high-resolution parallax-free Compton enhanced PET scanner dedicated to brain research. Phys Med Biol 49: 2547–2562 (2004).CrossRefGoogle Scholar
  31. 31.
    Koral K. F., Zaidi, H. and Ljungberg, M., “Medical imaging techniques for radiation dosimetry.” in: Therapeutic applications of Monte Carlo calculations in nuclear medicine, edited by H Zaidi and G Sgouros Institute of Physics Publishing, Bristol, (2002), pp 55–83.Google Scholar
  32. 32.
    Singh M., An electronically collimated gamma camera for single photon emission computed tomography. Part I: Theoretical considerations and design criteria. Med Phys 10: 421–427 (1983).CrossRefADSGoogle Scholar
  33. 33.
    Evans R. D., The atomic nucleus, McGraw-Hill, New York, (1955).zbMATHGoogle Scholar
  34. 34.
    Carlsson G. A., Carlsson, C. A., Berggren, K. F. et al., Calculation of scattering cross sections for increased accuracy in diagnostic radiology. I. Energy broadening of Compton-scattered photons. Med Phys 9: 868–879 (1982).CrossRefGoogle Scholar
  35. 35.
    Hirasawa M. and Tomitani, T., Effect of compensation for scattering angular uncertainty in analytical Compton camera reconstruction. Phys Med Biol 49: 2083–2093 (2004).CrossRefGoogle Scholar
  36. 36.
    Todd R. W., Nightingale, J. and Everett, D., A proposed g-camera. Nature 25: 132 (1974).CrossRefADSGoogle Scholar
  37. 37.
    Meier D., Czermak, A., Jalocha, P. et al., Silicon detector for a Compton camera in nuclear medical imaging. IEEE Trans Nucl Sci 49: 812–816 (2002).CrossRefADSGoogle Scholar
  38. 38.
    Martin J. B., Dogan, N., Gromley, J. et al., Imaging multi-energy gammaray fields with a Compton scatter camera. IEEE Trans Nucl Sci 41: 1019–1025 (1994).CrossRefADSGoogle Scholar
  39. 39.
    LeBlanc J. W., Clinthorne, N. H., Hua, C.-H. et al., C-SPRINT: a prototype Compton camera system for low energy gamma ray imaging. IEEE Trans Nucl Sci 45: 943–949 (1998).CrossRefADSGoogle Scholar
  40. 40.
    Du Y. F., He, Z., Knoll, G. F. et al., Evaluation of a Compton scattering camera using 3-D position sensitive CdZnTe detectors. Nucl Instr Meth A 457: 203–211 (2001).CrossRefADSGoogle Scholar
  41. 41.
    Zhang L., Rogers, W. and Clinthorne, N., Potential of a Compton camera for high performance scintimammography. Phys Med Biol 49: 617–638 (2004).CrossRefGoogle Scholar
  42. 42.
    Scannavini M., Speller, R., Royle, G. et al., A possible role for silicon microstrip detectors in nuclear medicine: Compton imaging of positron emitters. Nucl Instr Meth A 477: 514–520 (2002).CrossRefADSGoogle Scholar
  43. 43.
    Basko R., Zeng, G. L. and Gullberg, G. T., Application of spherical harmonics to image reconstruction for the Compton camera. Phys Med Biol 43: 887–894 (1998).CrossRefGoogle Scholar
  44. 44.
    Sauve A. C., Hero, A. O., III, Rogers, W. L. et al., 3D image reconstruction for a Compton SPECT camera model. IEEE Trans Nucl Sci 46: 2075–2084 (1999).CrossRefADSGoogle Scholar
  45. 45.
    Brechner R. R. and Singh, M., Iterative reconstruction of electronically collimated SPECT images. IEEE Trans Nucl Sci 37: 1328–1332 (1990).CrossRefADSGoogle Scholar
  46. 46.
    Meikle S. R. and Badawi, R. D., “Quantitative techniques in Positron Emission Tomography.” in: Positron Emission Tomography: Basic Science and Clinical Practice, edited by P E Valk, D L Bailey, DW Townsend et al. Springer, London, (2003), pp 115–146.Google Scholar
  47. 47.
    Phelps M. E., PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41: 661–681 (2000).Google Scholar
  48. 48.
    Phelps M. E. and Cherry, S. R., The changing design of positron imaging systems. Clin. Pos. Imag. 1: 31–45 (1998).CrossRefGoogle Scholar
  49. 49.
    Wienhard K., Schmand, M., Casey, M. E. et al., The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci 49: 104–110 (2002).CrossRefADSGoogle Scholar
  50. 50.
    Marsden P. K., Detector technology challenges for nuclear medicine and PET. Nucl Instr Meth A 513: 1–7 (2003).CrossRefADSGoogle Scholar
  51. 51.
    van Eijk C. W. E., Inorganic scintillators in medical imaging. Phys Med Biol 47: R85–R106 (2002).CrossRefGoogle Scholar
  52. 52.
    Moses W. W., Current trends in scintillator detectors and materials. Nucl Instr Meth A 487: 123–128 (2002).CrossRefADSGoogle Scholar
  53. 53.
    Derenzo S. E., Weber, M. J., Bourret-Courchesne, E. et al., The quest for the ideal inorganic scintillator. Nucl Instr Meth A 505: 111–117 (2003).CrossRefADSGoogle Scholar
  54. 54.
    Casey M. E. and Nutt, R., A Multicrystal two-dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 33: 460–463 (1986).ADSGoogle Scholar
  55. 55.
    Dahlbom M., MacDonald, L. R., Schmand, M. et al., A YSO/LSO phoswich array detector for single and coincidence photon imaging. IEEE Trans Nucl Sci 45: 1128–1132 (1998).CrossRefADSGoogle Scholar
  56. 56.
    Jeavons A. P., Chandler, R. A. and Dettmar, C. A. R., A 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals. IEEE Trans Nucl Sci 46: 468–473 (1999).CrossRefADSGoogle Scholar
  57. 57.
    Worstell W., Johnson, O., Kudrolli, H. et al., First results with high-resolution PET detector modules using wavelength-shifting fibers. IEEE Trans Nucl Sci 45: 2993–2999 (1998).CrossRefADSGoogle Scholar
  58. 58.
    Bendriem B. and Townsend, D. W., The theory and practice of 3D PET, Kluwer Academic Publishers, The Netherlands, Dordrecht, (1998).Google Scholar
  59. 59.
    Strother S. C., Casey, M. E. and Hoffman, E. J., Measuring PET scanner sensitivity-relating count rates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci 37: 783–788 (1990).CrossRefADSGoogle Scholar
  60. 60.
    NEMA, Standards Publication NU 2-2001. Performance measurements of positron emission tomographs. National Electrical Manufacturers Association, 2001.Google Scholar
  61. 61.
    Hirst G. L. and Balmain, A., Forty years of cancer modelling in the mouse. Eur J Cancer 40: 1974–1980 (2004).CrossRefGoogle Scholar
  62. 62.
    Shmidt E. N. and Nitkin, A. Y., Pathology of mouse models of human lung cancer. Comp Med 54: 23–26 (2004).Google Scholar
  63. 63.
    Kwak I., Tsai, S. Y. and DeMayo, F. J., Genetically engineered mouse models for lung cancer. Annu Rev Physiol 66: 647–663 (2004).CrossRefGoogle Scholar
  64. 64.
    Boivin G. P. and Groden, J., Mouse models of intestinal cancer. Comp Med 54: 15–18 (2004).Google Scholar
  65. 65.
    Janssen K. P., Murine models of colorectal cancer: studying the role of oncogenic K-ras. Cell Mol Life Sci 60: 495–506 (2003).CrossRefGoogle Scholar
  66. 66.
    Dyer M. A., Mouse models of childhood cancer of the nervous system. J Clin Pathol 57: 561–576 (2004).CrossRefGoogle Scholar
  67. 67.
    Mant C. and Cason, J., A human murine mammary tumour virus-like agent is an unconvincing aetiological agent for human breast cancer. Rev Med Virol 14: 169–177 (2004).CrossRefGoogle Scholar
  68. 68.
    Gravekamp C., Sypniewska, R. and Hoflack, L., The usefulness of mouse breast tumor models for testing and optimization of breast cancer vaccines at old age. Mech Ageing Dev 125: 125–127 (2004).CrossRefGoogle Scholar
  69. 69.
    Bursch W., Grasl-Kraupp, B., Wastl, U. et al., Role of apoptosis for mouse liver growth regulation and tumor promotion: comparative analysis of mice with high (C3H/He) and low (C57Bl/6J) cancer susceptibility. Toxicol Lett 149: 25–35 (2004).CrossRefGoogle Scholar
  70. 70.
    Shappell S. B., Thomas, G. V., Roberts, R. L. et al., Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res 64: 2270–2305 (2004).CrossRefGoogle Scholar
  71. 71.
    Leach S. D., Mouse models of pancreatic cancer: the fur is finally flying! Cancer Cell 5: 7–11 (2004).zbMATHCrossRefGoogle Scholar
  72. 72.
    Arbeit J. M., Mouse models of cervical cancer. Comp Med 53: 256–258 (2003).Google Scholar
  73. 73.
    Bader M., Bohnemeier, H., Zollmann, F. S. et al., Transgenic animals in cardiovascular disease research Exp Physiol 85: 713–31 (2000).CrossRefGoogle Scholar
  74. 74.
    Rao S. and Verkman, A. S., Analysis of organ physiology in transgenic mice. Am J Physiol Cell Physiol 279: C1–C18 (2000).Google Scholar
  75. 75.
    Carmeliet P. and Collen, D., Transgenic mouse models in angiogenesis and cardiovascular disease. J Pathol 190: 387–405 (2000).CrossRefGoogle Scholar
  76. 76.
    James J. F., Hewett, T. E. and Robbins, J., Cardiac physiology in transgenic mice. Circ Res 82: 407–415 (1998).Google Scholar
  77. 77.
    Lavoie J. L., Bianco, R. A., Sakai, K. et al., Transgenic mice for studies of the renin-angiotensin system in hypertension. Acta Physiol Scand 181: 571–7 (2004).CrossRefGoogle Scholar
  78. 78.
    Janssen B. J. and Smits, J. F., Autonomic control of blood pressure in mice: basic physiology and effects of genetic modification. Am J Physiol Regul Integr Comp Physiol 282: R1545–64 (2002).Google Scholar
  79. 79.
    Gros D., Dupays, L., Alcolea, S. et al., Genetically modified mice: tools to decode the functions of connexins in the heart-new models for cardiovascular research. Cardiovasc Res 62: 299–308 (2004).CrossRefGoogle Scholar
  80. 80.
    Wessels A., Phelps, A., Trusk, T. C. et al., Mouse models for cardiac conduction system development. Novartis Found Symp 250: 44–59; discussion 59–67, 276–279 (2003).CrossRefGoogle Scholar
  81. 81.
    Russo G. L. and Russo, M., Ins and outs of apoptosis in cardiovascular diseases Nutr Metab Cardiovasc Dis 13: 291–300 (2003).CrossRefGoogle Scholar
  82. 82.
    Bernstein D., Exercise assessment of transgenic models of human cardiovascular disease. Physiol Genomics 13: 217–26 (2003).Google Scholar
  83. 83.
    Kopecky J., Flachs, P., Bardova, K. et al., Modulation of lipid metabolism by energy status of adipocytes: implications for insulin sensitivity. Ann N Y Acad Sci 967: 88–101 (2002).CrossRefADSGoogle Scholar
  84. 84.
    Fruchart J. C. and Duriez, P., High density lipoproteins and coronary heart disease. Future prospects in gene therapy. Biochimie 80: 167–72 (1998).CrossRefGoogle Scholar
  85. 85.
    Daugherty A., Mouse models of atherosclerosis. Am J Med Sci 323: 3–10 (2002).CrossRefGoogle Scholar
  86. 86.
    Carmeliet P., Moons, L. and Collen, D., Mouse models of angiogenesis, arterial stenosis, atherosclerosis and hemostasis. Cardiovasc Res 39: 8–33 (1998).CrossRefGoogle Scholar
  87. 87.
    Jacobs A. H., Li, H., Winkeler, A. et al., PET-based molecular imaging in neuroscience. Eur J Nucl Med Mol Imaging 30: 1051–1065 (2003).CrossRefGoogle Scholar
  88. 88.
    Bernstein A. and Breitman, M., Genetic ablation in transgenic mice. Molecular Biol Med 6: 523–530 (1989).Google Scholar
  89. 89.
    Doetschman T., Interpretation of phenotype in genetically engineered mice. Lab Animal Sci 49: 137–143 (1999).Google Scholar
  90. 90.
    Hanahan D., Transgenic mice as probes into complex systems. Science 246: 1265–1275 (1989).ADSGoogle Scholar
  91. 91.
    Liu Z., Stevenson, G. D., Barrett, H. H. et al., Imaging recognition of multidrug resistance in human breast tumors using 99mTc-labeled monocationic agents and a high-resolution stationary SPECT system. Nucl Med Biol 31: 53–65 (2004).CrossRefGoogle Scholar
  92. 92.
    Marsee D. K., Shen, D. H., MacDonald, L. R. et al., Imaging of metastatic pulmonary tumors following NIS gene transfer using single photon emission computed tomography. Cancer Gene Ther 11: 121–127 (2004).CrossRefGoogle Scholar
  93. 93.
    Blankenberg F. G., Mandl, S., Cao, Y.-A. et al., Tumor imaging using a standardized radiolabeled adapter protein docked to vascular endothelial growth factor. J Nucl Med 45: 1373–1380 (2004).Google Scholar
  94. 94.
    Toyohara J., Hayashi, A., Sato, M. et al., Development of radioiodinated nucleoside analogs for imaging tissue proliferation: comparisons of six 5-iodonucleosides. Nucl Med Biol 30: 687–696 (2003).CrossRefGoogle Scholar
  95. 95.
    Schechter N., Yang, D., Azhdarinia, A. et al., Assessment of epidermal growth factor receptor with 99mTc-ethylenedicysteine-C225 monoclonal antibody. Anticancer Drugs 14: 49–56 (2003).CrossRefGoogle Scholar
  96. 96.
    Schottelius M., Wester, H., Reubi, J. et al., Improvement of pharmacokinetics of radioiodinated Tyr(3)-octreotide by conjugation with carbohydrates. Bioconjug Chem 13: 1021–1030 (2002).CrossRefGoogle Scholar
  97. 97.
    Vanhove C., Lahoutte, T., Defrise, M. et al., Reproducibility of left ventricular volume and ejection fraction measurements in rat using pinhole gated SPECT. Eur J Nucl Med Mol Imaging 32: 211–220 (2005).CrossRefGoogle Scholar
  98. 98.
    Popperl G., Tatsch, K., Ruzicka, E. et al., Comparison of alphadihydroergocryptine and levodopa monotherapy in Parkinson’s disease: assessment of changes in DAT binding with [123I]IPT SPECT. J Neural Transm 111: 1041–1052 (2004).Google Scholar
  99. 99.
    Hashizume K., Tsuda, H., Hodozuka, A. et al., Clinical and experimental studies of epilepsy associated with focal cortical dysplasia. Psychiatry Clin Neurosci 58: S26–29 (2004).CrossRefGoogle Scholar
  100. 100.
    Morris T. A., Marsh, J. J., Chiles, P. G. et al., Single photon emission computed tomography of pulmonary emboli and venous thrombi using anti-D-dimer. Am J Respir Crit Care Med 169: 987–993 (2004).CrossRefGoogle Scholar
  101. 101.
    Saji H., Iida, Y., Kawashima, H. et al., In vivo imaging of brain dopaminergic neurotransmission system in small animals with high-resolution single photon emission computed tomography. Anal Sci 19: 67–71 (2003).CrossRefGoogle Scholar
  102. 102.
    Acton P. D., Hou, C., Kung, M. P. et al., Occupancy of dopamine D2 receptors in the mouse brain measured using ultra-high-resolution single-photon emission tomography and [123]IBF. Eur J Nucl Med Mol Imaging 29: 1507–1515 (2002).CrossRefGoogle Scholar
  103. 103.
    Grunder G., Siessmeier, T., Piel, M. et al., Quantification of D2-like dopamine receptors in the human brain with 18F-desmethoxyfallypride. J Nucl Med 44: 109–116 (2003).Google Scholar
  104. 104.
    Liu Z., Kastis, G. A., Stevenson, G. D. et al., Quantitative analysis of acute myocardial infarct in rat hearts with ischemia-reperfusion using a high-resolution stationary SPECT system. J Nucl Med 43: 933–939 (2002).Google Scholar
  105. 105.
    Funk T., Sun, M. and Hasegawa, B. H., Radiation dose estimates in small animal SPECT and PET. Med Phys 31: 2680–2686 (2004).CrossRefGoogle Scholar
  106. 106.
    Jaszczak R. J., Li, J., Wang, H. et al., Pinhole collimation for ultra high-resolution, small field of view SPECT. Phys Med Biol 39: 425–437 (1994).CrossRefGoogle Scholar
  107. 107.
    Wu M. C., Tang, H. R., O’Connell, J. W. et al., An ultra-high resolution ECG-gated myocardial imaging system for small animals. IEEE Tran Nucl Sci 46: 1199–1202 (1999).CrossRefADSGoogle Scholar
  108. 108.
    Wu M. C., Hasegawa, B. H. and Dae, M. W., Performance evaluation of a pinhole SPECT system for myocardial perfusion imaging of mice. Med Phys 29: 2830–2839 (2002).CrossRefGoogle Scholar
  109. 109.
    Ogawa K., Kawade, T., Nakamura, K. et al., Ultra high resolution pinhole SPECT for small animal study. IEEE Trans Nucl Sci 45: 3122–3126 (1998).CrossRefADSGoogle Scholar
  110. 110.
    Weber D. A. and Ivanovic, M., Pinhole SPECT: ultra-high resolution imaging for small animal studies. J Nucl Med 36: 2287–2289 (1995).Google Scholar
  111. 111.
    Ishizu K., Mukai, T., Yonekura, Y. et al., Ultra-high resolution SPECT system using four pinhole collimators for small animal studies. J Nucl Med 36: 2282–2286 (1995).Google Scholar
  112. 112.
    Habraken J. B. A., de Bruin, K., Shehata, M. et al., Evaluation of high-resolution pinhole SPECT using a small rotating animal. J Nucl Med 42: 1863–1869 (2001).Google Scholar
  113. 113.
    Schellingerhout D., Accorsi, R., Mahmood, U. et al., Coded aperture nuclear scintigraphy: a novel small animal imaging technique. Mol Imaging 1: 344–353 (2002).CrossRefGoogle Scholar
  114. 114.
    Metzler S. D., Bowsher, J. E., Smith, M. F. et al., Analytic determination of pinhole collimator sensitivity with penetration. IEEE Trans Med Imaging 20: 730–741 (2001).CrossRefGoogle Scholar
  115. 115.
    Accorsi R. and Metzler, S. D., Analytic determination of the resolution-equivalent effective diameter of a pinhole collimator. IEEE Trans Med Imaging 23: 750–763 (2004).CrossRefGoogle Scholar
  116. 116.
    Williams M. B., Zhang, G., More, M. J. et al., “Integrated CT-SPECT system for small animal imaging” Proc SPIE, Vol. 4142; pp 265–274 (2000).CrossRefADSGoogle Scholar
  117. 117.
    Meikle S. R., Kench, P., Weisenberger, A. G. et al., A prototype coded aperture detector for small animal SPECT. IEEE Trans Nucl Sci 49: 2167–2171 (2002).CrossRefADSGoogle Scholar
  118. 118.
    Weisenberger A. G., Bradley, E. L., Majewski, S. et al., Development of a novel radiation imaging detector system for in vivo gene mapping in small animals. IEEE Trans Nucl Sci 45: 1743–1749 (1998).CrossRefADSGoogle Scholar
  119. 119.
    Weisenberger A. G., Wojcik, R., Bradley, E. L. et al., SPECT-CT system for small animal imaging. IEEE Trans Nucl Sci 50: 74–79 (2003).CrossRefADSGoogle Scholar
  120. 120.
    Welsh R. E., Brewer, P., Bradley, E. L. et al., “An economical dual-modality small animal imaging system with application to studies of diabetes” IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 3; pp 1845–1848 (2002).Google Scholar
  121. 121.
    MacDonald L. R., Iwanczyk, J. S., Patt, B. E. et al., “Development of new high resolution detectors for small animal SPECT imaging” IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 3; pp 21/75 (2002).Google Scholar
  122. 122.
    Beekman F. J., McElroy, D. P., Berger, F. et al., Towards in vivo nuclear microscopy: iodine-125 imaging in mice using micro-pinholes. Eur J Nucl Med Mol Imaging 29: 933–938 (2002).CrossRefGoogle Scholar
  123. 123.
    Furenlid L. R., Wilson, D. W., Chen, Y.-c. et al., FastSPECT II: a second-generation high-resolution dynamic SPECT imager. IEEE Trans Nucl Sci 51: 631–635 (2004).CrossRefADSGoogle Scholar
  124. 124.
    Acton P. D. and Kung, H. F., Small animal imaging with high resolution single photon emission tomography. Nucl Med Biol 30: 889–895 (2003).CrossRefGoogle Scholar
  125. 125.
    Schramm N. U., Ebel, G., Engeland, U. et al., High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 50: 315–320 (2003).CrossRefADSGoogle Scholar
  126. 126.
    Cherry S. R., Shao, Y., Silverman, R. W. et al., MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 44: 1161–1166 (1997).CrossRefADSGoogle Scholar
  127. 127.
    Tornai M. P., Jaszczak, R. J., Turkington, T. G. et al., Small-animal PET: advent of a new era of PET research. J Nucl Med 40: 1176–1179 (1999).Google Scholar
  128. 128.
    Chatziioannou A. F., Molecular imaging of small animals with dedicated PET tomographs. Eur J Nucl Med Mol Imaging 29: 98–114 (2002).CrossRefGoogle Scholar
  129. 129.
    Del Guerra A. and Belcari, N., Advances in animal PET scanners. Q J Nucl Med 46: 35–47 (2002).Google Scholar
  130. 130.
    Shao Y., Cherry, S. R. and Chatziioannou, A. F., Design and development of 1 mm resolution PET detectors with position-sensitive PMTs. Nucl Instr Meth A 477: 486–490 (2002).CrossRefADSGoogle Scholar
  131. 131.
    Schelbert H. R., Inubushi, M. and Ross, R. S., PET imaging in small animals. J Nucl Cardiol 10: 513–520 (2003).CrossRefGoogle Scholar
  132. 132.
    Tai Y.-C., Chatziioannou, A., Yang, Y. et al., MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Phys Med Biol 48: 1519–1537 (2003).CrossRefGoogle Scholar
  133. 133.
    Yang Y., Tai, Y.-C., Siegel, S. et al., Optimization and performance evaluation of the microPET II scanner for in vivo small-animal imaging. Phys Med Biol 49: 2527–2545 (2004).CrossRefGoogle Scholar
  134. 134.
    Lee K., Kinahan, P. E., Miyaoka, R. S. et al., Impact of system design parameters on image figures of merit for a mouse PET scanner. IEEE Trans Nucl Sci 51: 27–33 (2004).CrossRefADSGoogle Scholar
  135. 135.
    Miyaoka R. S., Dynamic high resolution positron emission imaging of rats. Biomed Sci Instrum 27: 35–42 (1991).MathSciNetGoogle Scholar
  136. 136.
    Miyaoka R. S., Kohlmyer, S. G. and Lewellen, T. K., Performance characteristics of micro crystal element (MiCE) detectors. IEEE Trans Nucl Sci 48: 1403–1407 (2001).CrossRefADSGoogle Scholar
  137. 137.
    Tai Y., Chatziioannou, A., Siegel, S. et al., Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys Med Biol 46: 1845–1862 (2001).CrossRefGoogle Scholar
  138. 138.
    Chatziioannou A., Tai, Y. C., Doshi, N. et al., Detector development for microPET II: a 1 microl resolution PET scanner for small animal imaging. Phys Med Biol 46: 2899–2910 (2001).CrossRefGoogle Scholar
  139. 139.
    Weber S. and Bauer, A., Small animal PET: aspects of performance assessment. Eur J Nucl Med Mol Imaging 31: 1545–1555 (2004).CrossRefGoogle Scholar
  140. 140.
    Bergman S., The need for independent physics advice. Eur J Nucl Med Mol Imaging 30: 491–493 (2003).CrossRefGoogle Scholar
  141. 141.
    Nahmias C., Nutt, R., Hichwa, R. D. et al., PET tomograph designed for five minute routine whole body studies. [abstract] J Nucl Med 43: 11P (2002).Google Scholar
  142. 142.
    Townsend D. W., Carney, J. P. J., Yap, J. T. et al., PET/CT today and tomorrow. J Nucl Med 45: 4S–14 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • H. Zaidi
    • 1
  • B. H. Hasegawa
    • 2
  1. 1.Division of Nuclear MedicineGeneva University HospitalGenevaSwitzerland
  2. 2.Department of RadiologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations