Validation and Optimization of an Elevator Simulation Model with Modern Search Heuristics

  • Thomas Bartz-Beielstein
  • Mike Preuss
  • Sandor Markon
Part of the Operations Research/Computer Science Interfaces Series book series (ORCS, volume 32)


Elevator supervisory group control (ESGC) is a complex combinatorial optimization task that can be solved by modern search heuristics. To reduce its complexity and to enable a theoretical analysis, a simplified ESGC model (S-ring) is proposed. The S-ring has many desirable properties: Fast evaluation, reproducibility, scalability, and extensibility. It can be described as a Markov decision process and thus be analyzed theoretically and numerically. Algorithm based validation (ABV), as a new methodology for the validation of simulation models, is introduced. Based on ABV, we show that the S-ring is a valid ESGC model. Finally, the extensibility of the S-ring model is demonstrated.


Elevator group control optimization discrete-event simulation models validation search heuristics evolutionary algorithms Markov decision processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, D.V. and Beyer, H.-G. (2003). A comparison of evolution strategies with other direct search methods in the presence of noise. Computational Optimization and Applications, 24(1).Google Scholar
  2. Banks, J., Carson, J. S., Nelson, B. L., and Nicol, D. M. (2001). Discrete Event System Simulation. Prentice Hall.Google Scholar
  3. Barney, G. (1986). Elevator Traffic Analysis, Design and Control. Cambridge U.P.Google Scholar
  4. Bartz-Beielstein, T. and Markon, S. (2004). Tuning search algorithms for real-world applications: A regression tree based approach. In Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pages 1111–1118, Portland, Oregon. IEEE Press.Google Scholar
  5. Bartz-Beielstein, T., Parsopoulos, K. E., and Vrahatis, M. N. (2004). Analysis of particle swarm optimization using computational statistics. In Simos, T. E. and Tsitouras, Ch., editors, International Conference on Numerical Analysis and Applied Mathematics 2004 (IC-NAAM), pages 34–37. European Society of Computational Methods in Science and Engineering (ESCMSE), Wiley.Google Scholar
  6. Beielstein, T., Ewald, C.-P., and Markon, S. (2003a). Optimal elevator group control by evolution strategies. In Cantú-Paz, E., Foster, J. A., Deb, K., Davis, L. D., Roy, R., O’Reilly, U.-M., Beyer, Hans-Georg, et al., editors, Proc. Genetic and Evolutionary Computation Conf. (GECCO 2003), Chicago IL, Part II, volume 2724 of Lecture Notes in Computer Science, pages 1963–1974, Berlin. Springer.Google Scholar
  7. Beielstein, T. and Markon, S. (2002). Threshold selection, hypothesis tests, and DOE methods. In Fogel, David B., El-Sharkawi, Mohamed A., Yao, Xin, Greenwood, Garry, Iba, Hitoshi, Marrow, Paul, and Shackleton, Mark, editors, Proceedings of the 2002 Congress on Evolutionary Computation CEC2002, pages 777–782. IEEE Press.Google Scholar
  8. Beielstein, T., Markon, S., and Preuß, M. (2003b). Algorithm based validation of a simplified elevator group controller model. In Ibaraki, T., editor, Proc. 5th Metaheuristics Int’l Conf. (MIC’03), pages 06/1–06/13 (CD-ROM), Kyoto, Japan.Google Scholar
  9. Beielstein, T., Markon, S., and Preuβ, M. (2003c). A parallel approach to elevator optimization based on soft computing. In Ibaraki, T., editor, Proc. 5th Metaheuristics Int’l Conf. (MIC’03), pages 07/1–07/11 (CD-ROM), Kyoto, Japan.Google Scholar
  10. Crites, R.H. and Barto, A.G. (1998). Elevator group control using multiple reinforcement learning agents. Machine Learning, 33(2–3):235–262.CrossRefGoogle Scholar
  11. François, O. and Lavergne, C. (2001). Design of evolutionary algorithms — a statistical perspective. IEEE Transactions on Evolutionary Computation, 5(2):129–148.CrossRefGoogle Scholar
  12. Howard, R. A. (1972). Dynamic Programming and Markov Processes. MIT Press, 7th edition.Google Scholar
  13. Law, A.M. and Kelton, W.D. (2000). Simulation Modelling and Analysis. McGraw-Hill, New York, 3rd edition.Google Scholar
  14. Markon, S. (1995). Studies on Applications of Neural Networks in the Elevator System. PhD thesis, Kyoto University.Google Scholar
  15. Markon, S., Arnold, D.V., Bäck, T., Beielstein, T., and Beyer, H.-G. (2001). Thresholding — a selection operator for noisy ES. In Kim, J.-H., Zhang, B.-T., Fogel, G., and Kuscu, I., editors, Proc. 2001 Congress on Evolutionary Computation (CEC’01), pages 465–472, Seoul, Korea. IEEE Press, Piscataway NJ.Google Scholar
  16. Markon, S. and Nishikawa, Y. (2002). On the analysis and optimization of dynamic cellular automata with application to elevator control. The 10th Japanese-German Seminar, Nonlinear Problems in Dynamical Systems, Theory and Applications. Noto Royal Hotel, Hakui, Ishikawa, Japan.Google Scholar
  17. McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Models. Chapman and Hall, 2nd edition.Google Scholar
  18. Naudts, B. and Kallel, L. (2000). A comparison of predictive measures of problem difficulty in evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 4(1):1–15.CrossRefGoogle Scholar
  19. Naylor, T.H. and Finger, J.M. (1967). Verification of computer simulation models. Management Science, 2:B92–B101.Google Scholar
  20. Reeves, C.R. and Yamada, T. (1998). Genetic algorithms, path relinking and the flowshop sequencing problem. Evolutionary Computation journal (MIT press), 6(1):230–234.Google Scholar
  21. Schwefel, H.-P., Wegener, I., and Weinert, K., editors (2003). Advances in Computational Intelligence — Theory and Practice. Natural Computing Series. Springer, Berlin.Google Scholar
  22. So, A.T. and Chan, W.L. (1999). Intelligent Building Systems. Kluwer A.P.Google Scholar
  23. Som, T. K. and Sargent, R. G. (1989). A formal development of event graphs as an aid to structured and efficient simulation programs. ORSA J. Comp.Google Scholar
  24. Whitley, D., Watson, J.P., Howe, A., and Barbulescu, L. (2002). Testing, evaluation and performance of optimization and learning systems. Technical report, The GENITOR Research Group in Genetic Algorithms and Evolutionary Computation, Colorado State University.Google Scholar
  25. Wolpert, D.H. and Macready, W.G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–82.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Thomas Bartz-Beielstein
    • 1
  • Mike Preuss
    • 1
  • Sandor Markon
    • 2
  1. 1.Universtität DortmundDortmundGermany
  2. 2.FUJITEC Co.Ltd.World HeadquartersOsakaJapan

Personalised recommendations