Space-Charge Driven Holograms in Anisotropic Media

  • Germano Montemezzani
  • Marko Zgonik
Part of the Springer Series in Optical Sciences book series (SSOS, volume 113)

4.6 Conclusions

In this chapter, we summarized the effects of the various anisotropic material properties on light diffraction, space-charge field formation, and photorefractive two-wave mixing interactions. These properties include the birefringence, the dielectric constants, the dichroism, the electro-optic constants, the elastic and photoelastic constants, the piezoelectric constants, the mobility tensor, and the cross-sections for free carrier photoexcitation. All these material properties have a substantial influence on the observable quantities. In particular, the role played in photorefractive materials by an anisotropy of the photoexcitation process with respect to light polarization, often over-looked, was discussed in detail here. Also, light diffraction in anisotropic media was treated in deeper detail. While the coupled wave model presented in Section 4.3 does apply to photorefractive volume gratings, it is equally important for any holographic materials having strong birefringence and/or containing volume gratings with strongly anisotropic properties.


Anisotropic Medium Diffraction Efficiency Pump Wave Optical Indicatrix Transmission Grating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Kogelnik: Bell Syst. Tech. J. 48, 2909 (1969).Google Scholar
  2. 2.
    R.S. Cudney, R.M. Pierce, G.D. Bacher, and J. Feinberg: J. Opt. Soc. Am. B 8, 1326 (1991).ADSCrossRefGoogle Scholar
  3. 3.
    B.I. Sturman, S.G. Odoulov, and M. Yu. Goulkov: Phys. Rep. 275, 197 (1996)CrossRefADSGoogle Scholar
  4. 4.
    G. Montemezzani, C. Medrano, P. Günter, and M. Zgonik: Phys. Rev. Lett. 79, 3403 (1997).CrossRefADSGoogle Scholar
  5. 5.
    V.M. Agranovich and V.L. Ginzburg, in Crystal optics with spatial dispersion, and excitons, Springer Series in Solid-State Sciences 42, 2 edn., edited by H. J. Queisser, Springer, Berlin (1984).Google Scholar
  6. 6.
    G. Montemezzani and M. Zgonik: Phys. Rev. E 35, 1035 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    A.A. Izvanov, A.E. Mandel, N.D. Khatkov, and S.M. Shandarov: Optoel. Data Proc. Instr. 2, 80 (1986).Google Scholar
  8. 8.
    S.I. Stepanov, S.M. Shandarov, and N.D. Khatkov: Sov. Phys. Solid State 29, 1754 (1987).Google Scholar
  9. 9.
    P. Günter and M. Zgonik: Opt. Lett. 16, 1826 (1991).ADSCrossRefGoogle Scholar
  10. 10.
    G. Pauliat, M. Mathey, and G. Roosen: J. Opt. Soc. Am. B 8, 1942 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    J.F. Nye, Physical properties of crystals, Clarendon Press, Oxford (1985).Google Scholar
  12. 12.
    D.F. Nelson and M. Lax: Phys. Rev. Lett. 24, 1187 (1970).CrossRefADSGoogle Scholar
  13. 13.
    M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscherry, and P. Günter: J. Appl. Phys. 74, 1287 (1993).CrossRefADSGoogle Scholar
  14. 14.
    C.P. Tzou, T.Y. Chang, and R.W. Hellwarth: Proc. SPIE 613, 58 (1986).Google Scholar
  15. 15.
    D. Mahgerefteh, D. Kirillov, R.S. Cudney, G.D. Bacher, R.M. Pierce, and J. Feinberg: Phys. Rev. B 53, 7094 (1996).CrossRefADSGoogle Scholar
  16. 16.
    P. Bernasconi, I. Biaggio, M. Zgonik, and P. Günter: Phys. Rev. Lett. 78, 106 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    S. Follonier, C. Bosshard, F. Pan, and P. Günter: Opt. Lett. 21, 1655 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    E.V. Rudenko and A.V. Sukhov: JETP 78, 875 (1994).ADSGoogle Scholar
  19. 19.
    I.C. Khoo, M.Y. Shih, M.V. Wood, B.D. Guenther, P.H. Chen, F. Simoni, S.S. Slussarenko, O. Francescangeli, and L. Lucchetti: Proc. IEEE 87, 1897 (1999).CrossRefGoogle Scholar
  20. 20.
    A. Golemme, B. Kippelen, and N. Peyghambarian: Chem. Phys. Lett. 319, 655 (2000).CrossRefADSGoogle Scholar
  21. 21.
    J.J. Butler and M.S. Malcuit: Opt. Lett. 25, 420 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    M. Jazbinsek, I. Drevensek-Olenik, M. Zgonik, A.K. Fontecchio and G.P. Crawford: J. Appl. Phys. 90, 3831 (2001).ADSCrossRefGoogle Scholar
  23. 23.
    T.K. Gaylord and M.G. Moharam: Appl. Opt. 20, 3271 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    M. Born and E. Wolf, Principles of optics, 6 edn., Pergamon Press, Oxford (1980).Google Scholar
  25. 25.
    G.N. Ramachandran and S. Ramaseshan, in Handbuch der Physik, edited by S. Flügge Vol. 25/1, pp. 85–96. Springer, Berlin (1961).Google Scholar
  26. 26.
    E. Guibelalde: Opt. Quantum Electr. 16, 173 (1984).CrossRefGoogle Scholar
  27. 27.
    R. Birabassov, A. Yesayan, and T.V. Galtsyan: Opt. Lett. 24, 1669 (1999).ADSCrossRefGoogle Scholar
  28. 28.
    S.R. Marder, J.W. Perry, and C.P. Yakymyshyn: Chem. Mater. 6, 1137 (1994).CrossRefGoogle Scholar
  29. 29.
    F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M.S. Wong, and P. Günter: Appl. Phys. Lett. 69, 13 (1996).CrossRefADSGoogle Scholar
  30. 30.
    N.V. Kukhtarev, V.B. Markov, S.G. Odulov, M.S. Soskin, and V.L. Vinetskii: Ferroelectrics 22, 949 (1979).Google Scholar
  31. 31.
    A.M. Glass, D. VonderLinde, and T.J. Negran: Appl. Phys. Lett. 25, 233 (1974).CrossRefADSGoogle Scholar
  32. 32.
    G. Montemezzani: Phys. Rev. A 62, 053803 (2000).CrossRefADSGoogle Scholar
  33. 33.
    M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M.H. Garrett, D. Rytz, Y. Zhu, and X. Wu: Phys. Rev. B 50, 5941 (1994).CrossRefADSGoogle Scholar
  34. 34.
    P. Yeh, Introduction to photorefractive nonlinear optics, Wiley series in pure and applied optics, Wiley, New York (1993).Google Scholar
  35. 35.
    N.V. Kukhtarev, V.B. Markov, S.G. Odulov, M.S. Soskin, and V.L. Vinetskii: Ferroelectrics 22, 961 (1979).Google Scholar
  36. 36.
    P. Yeh: Opt. Commun. 45, 323 (1983).CrossRefADSGoogle Scholar
  37. 37.
    G. Montemezzani, A.A. Zozulya, L. Czaia, D.Z. Anderson, M. Zgonik, and P. Günter: Phys. Rev. A 52, 1791 (1995).CrossRefADSGoogle Scholar
  38. 38.
    C. Medrano, M. Zgonik, I. Liakatas, and P. Günter: J. Opt. Soc. Am. B 13, 2657 (1996).ADSCrossRefGoogle Scholar
  39. 39.
    G.C. Valley: J. Appl. Phys. 59, 3363 (1986).CrossRefADSGoogle Scholar
  40. 40.
    F.P. Strohkendl, J.M.C. Jonathan, and R.W. Hellwarth: Opt. Lett. 11, 312 (1986).ADSCrossRefGoogle Scholar
  41. 41.
    U. van Stevendaal, K. Buse, H. Malz, H. Veenhuis, and E. Kratzig: J. Opt. Soc. Am. B 15, 2868 (1998).ADSCrossRefGoogle Scholar
  42. 42.
    K.R. MacDonald, J. Feinberg, M.Z. Zha, and P. Günter: Opt. Commun. 50, 146 (1984).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Germano Montemezzani
    • 1
  • Marko Zgonik
    • 2
  1. 1.Swiss Federal Institute of TechnologyNonlinear Optics LaboratoryZürichSwitzerland
  2. 2.Faculty of Mathematics and PhysicsUniversity of Ljubljana and Jozef Stefan InstituteLjubljanaSlovenia

Personalised recommendations