Unusually High Thermal Conductivity in Carbon Nanotubes

  • Young-Kyun Kwon
  • Philip Kim


Recently discovered carbon nanotubes have exhibited many unique material properties including very high thermal conductivity. Strong sp 2 bonding configurations in carbon network and nearly perfect self-supporting atomic structure in nanotubes give unusually high phonon-dominated thermal conductivity along the tube axis, possibly even surpassing that of other carbon-based materials such as diamond and graphite (in plane). In this chapter, we explore theoretical and experimental investigations for the thermal-transport properties of these materials.


Carbon Nanotubes Graphene Sheet High Thermal Conductivity Tube Axis Dynamical Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego, 1996.Google Scholar
  2. [2]
    M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes. Springer-Verlag, Berlin, 1996.Google Scholar
  3. [3]
    S. Iijima, Helical microtubules of Graphitic Carbon. Nature (London) 354, 56 (1991).CrossRefADSGoogle Scholar
  4. [4]
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature (London) 318, 162 (1985).CrossRefADSGoogle Scholar
  5. [5]
    L. Wei, P. K. Kuo, R. L. Thomas, T. R. Anthony, and W. F. Banholzer, Thermal-Conductivity of Isotopically Modified Single-Crystal Diamond, Phys. Rev. Lett. 70(24), 3764 (1993).CrossRefADSGoogle Scholar
  6. [6]
    R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, (1993)).Google Scholar
  7. [7]
    J. W. Mintmire, B. I. Dunlap, and C. T. White, Are Fullerene Tubules Metallic? Phys. Rev. Lett. 68, 631 (1992).CrossRefADSGoogle Scholar
  8. [8]
    N. Hamada, S. Sawada, and A. Oshiyama, New One-Dimensional Conductors: Graphitic Microtubules, Phys. Rev. Lett. 68, 1579 (1992).CrossRefADSGoogle Scholar
  9. [9]
    R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Topological Defects in Large Fullerenes. Chem. Phys. Lett. 195, 537 (1992).CrossRefADSGoogle Scholar
  10. [10]
    R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Phonon Modes in Carbon Nanotubules, Chem. Phys. Lett. 209, 77 (1993).CrossRefADSGoogle Scholar
  11. [11]
    M. S. Dresslehaus and P. C. Eklund, Phonons in Carbon Nanotubes, Adv. Phys. 49(6), 705–814 (2000).ADSCrossRefGoogle Scholar
  12. [12]
    C. Oshima, T. Aizawa, R. Souda, Y. Ishizawa, and Y. Sumiyoshi, Surface Phonon-Dispersion Curves of Graphite (0001) over the Entire Energy Region, Solid State Comm. 65, 1601 (1988).CrossRefADSGoogle Scholar
  13. [13]
    T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima, Bond Softening in Monolayer Graphite Formed on Transition-Metal Carbide Surfaces, Phys. Rev. B 42, 11469 (1990).CrossRefADSGoogle Scholar
  14. [14]
    L. X. Benedict, S. G. Louie, and M. L. Cohen, Heat Capacity of Carbon Nanotubes. Solid State Comm. 100(3), 177 (1996).CrossRefADSGoogle Scholar
  15. [15]
    J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Thermal Conductivity of Single-Walled Carbon Nanotubes, Phys. Rev. B 59, R2514 (1999).CrossRefADSGoogle Scholar
  16. [16]
    P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Thermal Transport Measurements of Individual Multiwalled Nanotubes, Phys. Rev. Lett. 87, 215502 (2001).ADSCrossRefGoogle Scholar
  17. [17]
    C. Uher, Thermal Conductivity of Graphite, In O. Madelung and G. K. White, eds., Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology 15c of New Series, Group III, 426–448. Springer-Verlag, Berlin (1991).Google Scholar
  18. [18]
    P. Jund and R. Jullien, Molecular-Dynamics Calculation of the Thermal Conductivity of Vitreous Silica, Phys. Rev. B 59, 13707 (1999).CrossRefADSGoogle Scholar
  19. [19]
    M. Schoen and C. Hoheisel, The Shear Viscosity of a Lennard-Jones Fluid Calculated by Equilibrium Molecular-Dynamics, Mol. Phys. 56, 653 (1985).CrossRefADSGoogle Scholar
  20. [20]
    D. Levesque and L. Verlet, Molecular-Dynamics Calculations of Transport-Coefficients, Mol. Phys. 61, 143 (1987).CrossRefADSGoogle Scholar
  21. [21]
    D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Theoretical Chemistry Monograph Series. (Academic Press, London, 1990).zbMATHGoogle Scholar
  22. [22]
    D. A. McQuarrie, Statistical Mechanics. (Harper and Row, London, 1976).Google Scholar
  23. [23]
    J. Che, T. Çğın, and W. A. Goddard III, Thermal Conductivity of Carbon Nanotubes, Nanotech. 11, 65 (2000).CrossRefADSGoogle Scholar
  24. [24]
    A. Maeda and T. Munakata, Lattice Thermal-Conductivity via Homogeneous Nonequilibrium Molecular-Dynamics, Phys. Rev. E 52, 234 (1995).CrossRefADSGoogle Scholar
  25. [25]
    D. J. Evans, Homogeneous Nemd Algorithm for Thermal-Conductivity: Application of Non-canonical Linear Response Theory, Phys. Lett. A 91, 457 (1982).CrossRefADSGoogle Scholar
  26. [26]
    D. P. Hansen and D. J. Evans, A Generalized Heat-Flow Algorithm, Mol. Phys. 81, 767 (1994).CrossRefADSGoogle Scholar
  27. [27]
    D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 1998).Google Scholar
  28. [28]
    S. Nosé, A Molecular-Dynamics Method for Simulations in the Canonical Ensemble, Mol. Phys. 52, 255 (1984).CrossRefADSGoogle Scholar
  29. [29]
    W. G. Hoover, Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A 31, 1695 (1985).CrossRefADSGoogle Scholar
  30. [30]
    J. Tersoff, Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon, Phys. Rev. Lett. 61, 2879 (1988).CrossRefADSGoogle Scholar
  31. [31]
    J. Tersoff, New Empirical-Approach for the Structure and Energy of Covalent Systems, Phys. Rev. B 37, 6991 (1988).CrossRefADSGoogle Scholar
  32. [32]
    Y.-K. Kwon, S. Saito, and D. Tománek, Effect of Intertube Coupling on the Electronic Structure of Carbon Nanotube Ropes, Phys. Rev. B 58, R13314 (1998).CrossRefADSGoogle Scholar
  33. [33]
    S. Berber, Y.-K. Kwon, and D. Tomanek, Unusually High Thermal Conductivity of Carbon Nanotubes, Phys. Rev. Lett. 84, 4613–16 (2000).CrossRefADSGoogle Scholar
  34. [34]
    T. R. Anthony, W. F. Banholzer, J. F. Fleischer, L. Wei, P. K. Kuo, R. L. Thomas, and R. W. Pryor, Thermal-Diffusivity of Isotopically Enriched c12 Diamond, Phys. Rev. B 42, 1104 (1990).CrossRefADSGoogle Scholar
  35. [35]
    T. Nihira and T. Iwata, Thermal Resistivity Changes in Electron-Irradiated Pyrolytic-Graphite, Jpn. J. Appl. Phys. 14, 1099 (1975).CrossRefADSGoogle Scholar
  36. [36]
    M. G. Holland, C. A. Klein, and W. D. Straub, Lorenz Number of Graphite at Very Low Temperatures, J. Phys. Chem. Solids 27, 903 (1966).CrossRefADSGoogle Scholar
  37. [37]
    A. de Combarieu, Thermic Conductivity of Quasi Monocrystalline Graphite and Effects of Irradiation by Neutrons: 1. Measurements, J. Phys.-Paris 28, 951 (1967).Google Scholar
  38. [38]
    J. Hone, M. Whitney, and A. Zettl, Thermal Conductivity of Single-Walled Carbon Nanotubes, Synthetic Metals 103, 2498 (1999).CrossRefGoogle Scholar
  39. [39]
    G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 16th edition (Longman, London, 1995).Google Scholar
  40. [40]
    B. T. Kelly, Physics of Graphite (Applied Science, London, 1981).Google Scholar
  41. [41]
    J. Heremans, Jr., and C. P. Beets, Thermal Conductivity and Thermopower of Vapor-Grown Graphite Fibers, Phys. Rev. B 32, 1981 (1985).ADSCrossRefGoogle Scholar
  42. [42]
    R. S. Ruoff and D. C. Lorents, Mechanical and Thermal-Properties of Carbon Nanotubes, Carbon 33, 925 (1995).CrossRefGoogle Scholar
  43. [43]
    W. Yi, L. Lu, Z. Dian-Lin, Z. W. Pan, and S. S. Xie, Linear Specific Heat of Carbon Nanotubes, Phys. Rev. B 59, R9015 (1999).CrossRefADSGoogle Scholar
  44. [44]
    Z. W. Pan, S. S. Xie, B. H. Chang, C. Y. Wang, L. Lu, W. Liu, W. Y. Ahou, W. Z. Li, and L. X. Quan, Very Long Carbon Nanotubes, Nature (London) 394, 631 (1998).CrossRefADSGoogle Scholar
  45. [45]
    J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, Electrical and Thermal Transport Properties of Magnetically Aligned Single Walt Carbon Nanotube Films, Appl. Phys. Lett. 77, 666 (2000).CrossRefADSGoogle Scholar
  46. [46]
    R. Peierls, Quantum Theory of Solids (Oxford University Press, Oxford, 1955).zbMATHGoogle Scholar
  47. [47]
    J. Hone, Phonons and Thermal Properties of Carbon Nanotubes, In M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, eds., Carbon Nanotubes (Springer-Verlag, Berlin, 2001).Google Scholar
  48. [48]
    K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes, Measurement of the Quantum of Thermal Conductance, Nature (London) 404, 974 (2000).ADSCrossRefGoogle Scholar
  49. [49]
    M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, and J. E. Fischer, Carbon Nanotube Composites for Thermal Management, Appl. Phys. Lett. 80, 2767 (2002).CrossRefADSGoogle Scholar
  50. [50]
    D. G. Cahill, Thermal-Conductivity Measurement from 30 to 750 K: The 3 ω Method, Rev. Sci. Instrum. 61, 802 (1990).CrossRefADSGoogle Scholar
  51. [51]
    D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Thermal Conductivity of Individual Silicon Nanowires, Appl. Phys. Lett. 83, 2934 (2003).ADSCrossRefGoogle Scholar
  52. [52]
    H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, Nanotubes as Nanoprobes in Scanning Probe Microscopy, Nature (London) 384, 147 (1996).CrossRefADSGoogle Scholar
  53. [53]
    L. Shi, P. Kim, P. McEuen, and A. Majumdar, unpublished, 2002.Google Scholar
  54. [54]
    P. G. Collins, M. Hersam, M. Arnold, R. Martel, and Ph. Avouris, Current Saturation and Electrical Breakdown in multiwalled Carbon Nanotubes, Phys. Rev. Lett. 86, 3128 (2001).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Young-Kyun Kwon
    • 1
  • Philip Kim
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of PhysicsColumbia UniversityNew YorkUSA

Personalised recommendations