Sarcomere Dynamics, Stepwise Shortening and the Nature of Contraction

  • Gerald H. Pollack
  • Felix A. Blyakhman
  • Xiumei Liu
  • Ekaterina Nagomyak
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 565)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. Altringham, J. D., Bottinelli, R., and lacktis, J. W., 1984, Is stepwise shortening an artifact?, Natue 307: 653–655.CrossRefGoogle Scholar
  2. Blyakhman, F., Shklyar, T., and Pollack, G.H., 1999, Quantal length changes in single contracting sarcomeres, J. Muscle Res. Cell Motil, 20: 529–538.PubMedCrossRefGoogle Scholar
  3. Blyakhman, F., Tourovskaya, A. and Pollack, G. H., 2001, Quantal sacromere-length changes in relaxed single myofibrils, Biophys. J. 81: 1093–1100.PubMedGoogle Scholar
  4. Delay, M.J., Ishide, N., Jacobson, R.C., Pollack, G.H. and Tirosh, R., 1981, Stepwise sarcomere shortening: Analysis by high-speed cinemicrography, Science 213:1523–1525.PubMedCrossRefGoogle Scholar
  5. Edman, K.A.P. and Hoglund, O., 1981, A technique for measuring length changes of individul segments of an isolated muscle fibre, J. Physiol. 317:8–9.Google Scholar
  6. Fauver, M., Dunaway, D., Lilienfield, D., Craighead, H., and Pollack, G.H., 1998, Microfabricated cantilevers for measurement of subcellular and molecular forces, IEEE Trans. Biomed. Engr. 45: 891–898.CrossRefGoogle Scholar
  7. Gordon, A.M., Huxley, A.F. and Julian, F.J., 1966, Tension development in highly stretched vertebrate muscle fibers, J. Physiol. 184:143–169.PubMedGoogle Scholar
  8. Granzier, H.L.M. and Pollack, G.H., 1985, Stepwise shortening in unstimulated frog skeletal muscle fibers, J. Physiol. 362:173–188.PubMedGoogle Scholar
  9. Granzier, H.L.M., Mattiazzi, A. and Pollack, G.H., 1990, Sarcomere dynamics during isotonic velocity transients in single frog muscle fibers, Am J. Physiol (Cell) 259: C266–278.Google Scholar
  10. Haugen, P and Sten-Knudsen, O., 1976, Sarcomere lengthening and tension drop in the latent period of isolated frog skeletal muscle fibers, J. Gen Physiol. 68: 247–265.PubMedCrossRefGoogle Scholar
  11. Housmans, P., 1984, Discussion in Contractile Mechanisms in Muscle (eds., Pollack, G.H. and Sugi, H.), Plenum Press, N.Y., pp. 782–784.Google Scholar
  12. Huxley, A. F., 1984, Response to “Is stepwise sarcomere shortening an artifact?”, Nature 309:713–714.Google Scholar
  13. Iwazumi, T. and Pollack, G.H., 1979, On-line measurement of sarcomere length from diffraction patterns in cardiac and skeletal muscle, IEEE Tram Biomed. Eng. 26(2):86–93.CrossRefGoogle Scholar
  14. Liu, X. and Pollack, G. H., 2004, Stepwise sliding of single actin and myosin filaments, Biophys. J. 86:353–358.PubMedGoogle Scholar
  15. Myers, J., Tirosh, R., Jacobson, R.C. and Pollack, G.H., 1982, Phase locked loop measurement of sarcomere length with high time resolution, IEEE Trans Biomed. Eng. 29(6):463–466.PubMedCrossRefGoogle Scholar
  16. Nagornyak, E., Blyakhman, F. and Pollack, G.H., 2004, Effect of sarcomere length on step size in relaxed psoas muscle, J. Mus. Res. Cell Motil. In press.Google Scholar
  17. Oroudjev, E., Soares, J. Arcidiacono, S., Thompson, J. B., Fossey, A. A. and Hansma, H. G., 2002, Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy, Proc. Natl. Acad. Sci. 99(suppl 2):6460–6465.PubMedCrossRefGoogle Scholar
  18. Pollack, G.H., Iwazumi, T., ter Keurs, H.E.D.J. and Shibata, E.F., 1977, Sarcomere shortening in striated muscle occurs in stepwise fashion, Nature 268:757–759.PubMedCrossRefGoogle Scholar
  19. Pollack, G.H., Vassallo, D.V., Jacobson, R.C., Iwazumi, T., and Delay, M.J., 1979, Discrete nature of sarcomere shortening in striated muscle, In: Cross-bridge Mechanism in Muscle Contraction, H. Sugi and G.H. Pollack, ed., Univ. of Tokyo Press/Univ. Park Press, pp. 23–40.Google Scholar
  20. Pollack, G. H., 1984, Response to “Is stepwise shortening an artifact?”, Nature 309:712–714.PubMedCrossRefGoogle Scholar
  21. Pollack, G. H., 1986, Quantal mechanisms in cardiac contraction, Circ. Res. 59: 1–8.PubMedGoogle Scholar
  22. Pollack, G. H., 1990, Muscles and Molecules: Uncovering the Principles of Biological Motion, Ebner and Sons, Seattle.Google Scholar
  23. Pollack, G. H., 2001, Cells, Gels and the Engines of Life, Ebner and Sons, Seattle.Google Scholar
  24. Rudel, R. and Zite-Ferenczy, F., 1979, Do laser diffraction studies on striated muscle indicate ste4pwise sarcomere shortening?, Nature 278:573–575.PubMedCrossRefGoogle Scholar
  25. Sokolov, S., Grinko, A. A., Tourovskaia, A. V., Reitz, F. B., Blykhman, F. A. and Pollack, G. H., 2003, ‘Minimum average risk’ as a new peak detection algorithm to myofibrillar dynamics, Comput.Meth and Prog. in Biomed. 72(1):21–26.CrossRefGoogle Scholar
  26. Sugi, H., 1968, Local activation of frog muscle fibers with linearly rising currents, J. Physiol 199: 549–567.PubMedGoogle Scholar
  27. Svoboda, K., Schmidt, C. F., Schnapp, B. J. and Block, S. M, 1993, Direct observation of kinesin stepping by optical trapping interferometry, Nature 365:721–727.PubMedCrossRefGoogle Scholar
  28. Tameyasu, T., Toyoki, T. and Sugi, H., 1985, Non-steady motion in unloaded contractions of single frog cardiac cells, Biophys J. 48:461–465.PubMedGoogle Scholar
  29. Toride, M. and Sugi, H., 1989, Stepwise sarcomere shortening in locally activated frog skeletal muscle fibers, Proc. Natl. Acad. Sci. USA 72:1729–1733.Google Scholar
  30. Yakovenko, O., Blyakhman, F. and Pollack, G. H., 2002, Fundamental step size in single cardiac and skeletal sarcomeres, Am J. Physiol (Cell) 283(9):C735–C743.Google Scholar
  31. Yang, P., Tameyasu, T. and Pollack, G.H., 1998, Stepwise dynamics of connecting filaments measured in single myofibrillar sarcomeres, Biophys. J. 74:1473–1483.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Gerald H. Pollack
    • 1
  • Felix A. Blyakhman
  • Xiumei Liu
  • Ekaterina Nagomyak
    • 1
  1. 1.Dept. of BioengineeringUniv. of WashingtonSeattle

Personalised recommendations