Conformational Change and Regulation of Myosin Molecules

  • Mitsuo Ikebe
  • Xiang-dong Li
  • Katsuhide Mabuchi
  • Reiko Ikebe
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 565)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. Berg, J. S., Powell, B. C, and Cheney, R. E. (2001) A millennial myosin census, Mol. Biol. Cell 12, 780–794.PubMedGoogle Scholar
  2. Cheney, R.E., O’Shea, M.K., Heuser, J.E., Coelho, M.V., Wolenski, J.S., Espreafico, E.M., Forscher, P., Larson, RE., and Mooseker, M.S. (1993) Brain myosin-V is a two-headed unconventional myosin with motor activity, Cell, 75, 13–23.PubMedGoogle Scholar
  3. Coy, D. L., Hancock, W. O., Wagenbach, M., and Howard, J. (1999) Kinesin’s tail domain is an inhibitory regulator of the motor domain, Nat. Cell Biol. 1, 288–292.PubMedCrossRefGoogle Scholar
  4. Craig, R., Smith, R., and Kendrick-Jones, J. (1983) Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules, Nature, 302, 436–439.PubMedCrossRefGoogle Scholar
  5. Ebashi, S., and Ebashi, F. (1964) A NEW PROTEIN COPONENT PARTICIPATING IN THE SUPERPRECIPITATION OF MYOSIN B, J. Biochem., 55, 604–613.PubMedGoogle Scholar
  6. Ebashi, S., and Ebashi, F. (1964) A NEW PROTEIN FACTOR PROMOTING CONTRACTION OF ACTOMYOSIN Nature, 203, 645–646.PubMedCrossRefGoogle Scholar
  7. Espindola, F. S., Suter, D. M., Partata, L. B., Cao, T, Wolenski, J. S., Cheney, R. E., King, S. M., and Mooseker, M. S. (2000) The light chain composition of chicken brain myosin-Va: calmodulin, myosin-II essential light chains, and 8-kDa dynein light chain/PIN, Cell Motility & the Cytoskeleton 47, 269–281.CrossRefGoogle Scholar
  8. Gorecka, A., Aksoy, M.O., and Hartshome, D.J. (1976) The effect of phosphorylation of gizzard myosin on actin activation, Biochem. Biophys. Res. Commun., 76, 325–331.CrossRefGoogle Scholar
  9. Homma, K., Saito, J., Ikebe, R., and Ikebe, M. (2000) Ca(2+)-dependent regulation of the motor activity of myosin V, J. Biol. Chem., 275, 34766–34771.PubMedCrossRefGoogle Scholar
  10. Ikebe, M., Onishi, H., and Watanabe, S. (1977) Phosphorylation and dephosphorylation of a light chain of the chicken gizzard myosin molecule, J. Biochem., 82, 219–302.Google Scholar
  11. Ikebe, M., Hinkins, S., and Hartshome, D.J. (1983) Correlation of enzymatic properties and conformation of smooth muscle myosin, Biochemistry, 22, 4580–4587.PubMedCrossRefGoogle Scholar
  12. Kendrick-Jones, J., Lehman, W., and Sent-Gyorgyi, A.G. (1970) Regulation in molluscan muscles, J. Mol. Biol., 54, 313–326.PubMedCrossRefGoogle Scholar
  13. Lymn, R.W., and Taylor, E.W. (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin, Biochemistry, 10, 4617–4624.PubMedCrossRefGoogle Scholar
  14. Mabuchi, K. (1991) Heavy-meromyosin-decorated actin filaments: a simple method to preserve actin filaments for rotary shadowing, J. Struct. Biol., 107, 22–28.PubMedCrossRefGoogle Scholar
  15. Mermall, V., Post, P. L., and Mooseker, M. S. (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction, Science 279, 527–533.PubMedCrossRefGoogle Scholar
  16. Onishi, H., and Wakabayashi, T. (1982) Electron microscopic studies of myosin molecules from chicken gizzard muscle I: the formation of the intramolecular loop in the myosin tail, J. Biochem., 92, 871–879.PubMedGoogle Scholar
  17. Onishi, H., Wakabayashi, T., Kamata, T., and Watanabe, S. (1983) Electron microscopic studies of myosin molecules from chicken gizzard muscle II: The effect of thiophosphorylation of the 20K-dalton light chain on the ATP-induced change in the conformation of myosin monomers, J. Biochem., 94, 1147–1154.PubMedGoogle Scholar
  18. Philo, J. S. (2000) A method for directly fitting the time derivative of sedimentation velocity data and an alternative algorithm for calculating sedimentation coefficient distribution functions, Anal. Biochem. 279, 151–163.PubMedCrossRefGoogle Scholar
  19. Pollard, T.D., and Korn, E.D. (1971) Filaments of Amoeba proteus. II. Binding of heavy meromyosin by thin filaments in motile cytoplasmic extracts, J. Biol. Chem., 248, 4682–4690.Google Scholar
  20. Reck-Peterson, S. L., Provance, D. W., Jr., Mooseker, M. S., and Mercer, J. A. (2000) Class V myosins, Biochim. Biophys. Acta 1496, 36–51.PubMedCrossRefGoogle Scholar
  21. Sellers, J. R. (2000) Myosins: a diverse superfamily, Biochim. Biophys. Acta 1496, 3–22.PubMedCrossRefGoogle Scholar
  22. Siemankowaki, R.F., Wiseman, M.O., and White, H.D. (1985) ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle, Proc. Natl. Acad. Sci. U.SA., 82, 658–662.CrossRefGoogle Scholar
  23. Slayter, H.S., and Lowey, S. (1967) Substructure of the myosin molecule as visualized by electron microscopy, Proc. Natl. Acad Sci. U.S.A., 58, 1611–1618.PubMedCrossRefGoogle Scholar
  24. Sobieszek, A. (1977) Ca-linked phosphorylation of a light chain of vertebrate smooth-muscle myosin, Eur. J. Biochem., 73, 477–483.PubMedCrossRefGoogle Scholar
  25. Stafford, W. F., 3rd (1992) Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile, Anal. Biochem., 203, 295–301.PubMedCrossRefGoogle Scholar
  26. Stein, L.A., Chock, P.B., and Eisenberg, E. (1981) Mechanism of the actomyosin ATPase: effect of actin on the ATP hydrolysis step, Proc. Natl. Acad. Sci. U.S.A., 78, 1346–1350.PubMedCrossRefGoogle Scholar
  27. Stock, M. F., Guerrero, J., Cobb, B., Eggers, C. T., Huang, T. G., Li, X., and Hackney, D. D. (1999) Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity, J. Biol. Chem., 274, 14617–14623.PubMedCrossRefGoogle Scholar
  28. Suzuki, H., Onishi, H., Takahashi, K., and Watanabe, S. (1978) Structure and function of chicken gizzard myosin, J. Biochem., 84, 1529–1542.PubMedGoogle Scholar
  29. Tonomura, Y., Kitagawa, S., and Yoshimura, J. (1962) The initial phase of myosin A-adenosinetriphosphatase and the possible phosphorylation of myosin A, J. Biol. Chem., 237, 3660–3666.PubMedGoogle Scholar
  30. Trybus, K.M., Huiatt, T.W., and Lowey, S. (1982) A bent monomeric conformation of myosin from smooth muscle, Pro.Natl.Acad. Sci. USA., 79, 6151–6155.CrossRefGoogle Scholar
  31. Trybus, K.M., and Lowey, S. (1984) Conformational states of smooth muscle myosin. Effects of light chain phosphorylation and ionic strength, J. Biol. Chem., 259, 8564–8571.PubMedGoogle Scholar
  32. Trybus, K.M., Krementsova, E., Freyzon, Y. (1999) Kinetic characterization of a monomeric unconventional myosin V construct, J. Biol. Chem., 274, 27448–27456.PubMedCrossRefGoogle Scholar
  33. Verhey, K. J., and Rapoport, T. A. (2001) Kinesin carries the signal, Trends in Biochemical Sciences 26, 545–550.PubMedCrossRefGoogle Scholar
  34. Xie, X., Harrison, D.N., Schlichiting, J., Sweet, R.M., Kalabokis, V.N., Szent-Gyorgyi, A.G., and Cohen, C. (1994) Structure of the regulatory domain of scallop myosin at 2.8 A resolution, Nature, 368, 306–312.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Mitsuo Ikebe
    • 3
  • Xiang-dong Li
    • 1
  • Katsuhide Mabuchi
    • 2
  • Reiko Ikebe
    • 1
  1. 1.Department of PhysiologyUniversity of Massachusetts Medical SchoolWorcester
  2. 2.Boston Biomedical Research InstituteWatertown
  3. 3.Department of PhysiologyUniversity of Massachusetts Medical SchoolWorcester

Personalised recommendations