Mysterious Beauty of Beating Heart: Cardiac mechano-energetico-informatics

  • Hiroyuki Suga
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 565)


Beating Heart Unitary Step External Work Canine Heart Total Mechanical Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. 1).
    K. Sagawa, R.K. Lie, and J. Schaefer. Translation of Otto Frank’s paper “Die Grundform des Arteriellen Pulses” in Zeitschrift fur Biologic 37: 483–526 (1899). J. Mol. Cell Cardiol. 22: 253–277 (1990).Google Scholar
  2. 2).
    S. W. Peterson and E.H. Starling. On the mechanical factors which determine the output of the ventricles. J. Physiol 48: 357–379 (1914).Google Scholar
  3. 3).
    S. J. Sarnoff and E. Berglund. Ventricular function. I. Starling’s law of the heart studied by means of simultaneous right and left ventricular function curves in the dog. Circulation. 9: 706–718 (1954).PubMedGoogle Scholar
  4. 4).
    E.H. Sonnenblick. Force-velocity relations in mammalian heart muscle. Am. J. Physiol. 202: 931–939 (1962).PubMedGoogle Scholar
  5. 5).
    A. F. Huxley. Muscle structure and theories of contraction. J. Prog. Biophys. Biophys. Chem. 7: 255–318 (1957).Google Scholar
  6. 6).
    H. Suga. Analysis of left ventricular pumping by its pressure-volume coefficient. (in Japanese with English abstract and legends). Jpn. J. Med. Electr. Biol. Eng. 7: 406–415 (1969).Google Scholar
  7. 7).
    D. L. Brutsaert and E.H. Sonnenblick. Cardiac muscle mechanics in the evaluation of myocardial contractility and pump function: problems, concepts, and directions. Prog. Cardiovasc. Dis. 16: 337–361 (1973).PubMedCrossRefGoogle Scholar
  8. 8).
    E. Braunwald, J. Ross, and E.H. Sonnenblick. Mechanisms of Contraction of the Normal and Failing Heart. Little, Brown & Co., Boston, USA (1976).Google Scholar
  9. 9).
    J. E. W. Beneken. Electronic analog computer model of the human blood circulation. in: Pulsatile Blood Flow. edited by E.O. Attinger. (McGraw Hill, New York, 1964) pp. 423–432.Google Scholar
  10. 10).
    H. Suga, K. Sagawa, and A.A. Shoukas. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32: 314–322 (1973).PubMedGoogle Scholar
  11. 11).
    H. Suga H and K. Sagawa. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res. 35: 117–126 (1974).PubMedGoogle Scholar
  12. 12).
    K. Sagawa, L. Maughan, H. Suga, and K. Sunagawa. Cardiac Contraction and the Pressure-Volume Relationship. (Oxford Univ Press, New York, 1988).Google Scholar
  13. 13).
    H. Suga. Cardiac mechanics and energetics-from Emax to PVA. Frontiers Med. Biol. Engng. 2: 3–22 (1990).Google Scholar
  14. 14).
    H. Suga. Ventricular energetics. Physiol. Rev. 70: 247–277, 1990.PubMedGoogle Scholar
  15. 15).
    H. Suga. Paul White Dudley Lecture: Cardiac performance as viewed through the pressure-volume window. Jpn. Heart J. 35: 263–280 (1994).PubMedGoogle Scholar
  16. 16).
    H. Suga. Cardiac function. Chapter 5. in: Pediatric Cardiovascular Medicine. edited by J.H. Moller, J.I.E. Hoffman. (Churchill Livingstone, New York, 2000) pp. 65–77.Google Scholar
  17. 17).
    H. Suga. Global cardiac function: mechano-energetico-informatics. J. Biomech. 36:713–720 (2003).PubMedCrossRefGoogle Scholar
  18. 18).
    H. Suga. Cardiac energetics: from Emax to pressure-volume area. Clin. Exp. Pharmacol. Physiol. 30:580–588 (2003).PubMedCrossRefGoogle Scholar
  19. 19).
    E. Braunwald, D.P. Zipes, and W.B. Libby (eds). Heart Disease. A Textbook of Cardiovascular Medicine. 6th ed. (Saunders Co, Philadelphia, 2001).Google Scholar
  20. 20).
    W. F. Ganong. Review of Medical Physiology. 21st ed. (McGraw Hill, New York, 2003).Google Scholar
  21. 21).
    W.O. Fenn. The relation between the work performed and the energy liberated in muscular contraction. J. Physiol (London) 58: 373–395 (1924).Google Scholar
  22. 22).
    H. Suga. Energetics of the time-varying elastance model, a viscoelastic model, matches Mommaerts’ unifying concept of the Fenn effect of muscle. Jpn. Heart. J. 31: 341–353 (1990).PubMedGoogle Scholar
  23. 23).
    T. Nozawa, Y. Yasumura, S. Futaki, N. Tanaka, and H. Suga. The linear relation between oxygen consumption and pressure-volume area can be reconciled with the Fenn effect in dog left ventricle. Circ. Res. 65:1380–1389 (1989).PubMedGoogle Scholar
  24. 24).
    H. Suga, O. Yamada, Y. Goto, Y. Igarashi, Y. Yasumura, T. Nozawa, and S. Futaki. Left ventricular O2 consumption and pressure-volume area in puppies. Am. J. Physiol. 253: H770–776 (1987).PubMedGoogle Scholar
  25. 25).
    Y. Hata, T. Sakamoto, S. Hosogi, T. Ohe, H. Suga, and M. Takaki. Linear O2 use-pressure-volume area relation from curved end-systolic pressure-volume relation of the blood-perfused rat left ventricle. Jpn. J. Physiol. 48: 197–204 (1998).PubMedCrossRefGoogle Scholar
  26. 26).
    C. L. Gibbs and J.B. Chapman. Cardiac mechanics and energetics: chemomechanical transduction in cardiac muscle. Am. J. Physiol. 249: H199–206 (1985).PubMedGoogle Scholar
  27. 27).
    K. Onishi, K. Sekioka, R. Ishisu, H. Tanaka, M. Nakamura, Y. Ueda, and T. Nakano. Decrease in oxygen cost of contractility during hypocapnic alkalosis in canine hearts. Am. J. Physiol. 270: H1905–1913 (1996).PubMedGoogle Scholar
  28. 28).
    T. Mikane, J. Araki, S. Suzuki, J. Mizuno, J. Shimizu, S. Mohri, H. Matsubara, M. Hirakawa, T. Ohe, and H. Suga. O2 cost of contractility but not of mechanical energy increases with temperature in canine left ventricle. Am. J. Physiol. 277: H65–73 (1999).PubMedGoogle Scholar
  29. 29).
    I. Matsubara, A. Kamiyama, and H. Suga. X-ray difftaction study of contracting heart muscle. J. Mol. Biol. 111: 121–128 (1977).PubMedCrossRefGoogle Scholar
  30. 30).
    I. Matsubara, H. Suga, and N. Yagi: An X-ray diffraction study of the cross-circulated canine heart. J. Physiol. (London) 270: 311–320 (1977).Google Scholar
  31. 31).
    N. Yagi, H. Okuyama, H. Toyota H, J. Araki, J. Shimizu, G. Iribe, K. Nakamura, S. Mohri, K. Tsujioka, H. Suga, and F. Kajiya. Sarcomere-length dependence of lattice volume and radial mass transfer of myosin cross-bridges in rat papillary muscle. Pfluegers. Arch. (in press).Google Scholar
  32. 32).
    N. Yagi, J. Shimizu, S. Mohri, J. Araki, K. Nakamura, H. Okuyama, H. Toyota, T. Morimoto, Y. Morizane, M. Kurusu, T. Miura, K. Hashimoto, K. Tsujioka, H. Suga, and F. Kajiya. X-ray diffraction from a left ventricular wall of rat heart. Biophys. J. (in press).Google Scholar
  33. 33).
    H. Suga, Y. Goto, O. Kawaguchi, K. Hata, T. Takasago, A. Saeki, and T.W. Taylor. Ventricular perspective on efficiency. Basic Res. Cardiol. 88(suppl 2): 43–65 (1993).PubMedGoogle Scholar
  34. 34).
    H. Matsubara, J. Araki, M. Takaki, S.T. Nakagawa, and H. Suga. Logistic characterization of left ventricular isovolumic pressure-time curve. Jpn. J. Physiol. 45: 535–552 (1995).PubMedCrossRefGoogle Scholar
  35. 35).
    T. Sakamoto, M Takaki, Y. Hata, H. Matsubara, J. Araki, and H. Suga. Hybrid logistic characterization of isometric twitch force-time curve of intact blood-perfused canine right ventricular papillary muscle. Jpn. J. Physiol. 47: 283–289 (1997).PubMedCrossRefGoogle Scholar
  36. 36).
    J. Mizuno, T. Mikane, J. Araki, M. Hatashima, T. Moritan, T. Ishikawa, K. Komukai, S. Kurihara, M. Hirakawa, and H. Suga. Hybrid logistic characterization of isometric twitch force curve of isolated ferret right ventricular papillary muscle. Jpn. J. Physiol. 49: 145–158 (1999).PubMedCrossRefGoogle Scholar
  37. 37).
    R. G. Monroe. Myocardial oxygen consumption during ventricular contraction and relaxation. Circ. Res. 14:294–300 (1964).PubMedGoogle Scholar
  38. 38).
    Y. Yasumura, T. Nozawa, S. Futaki, N. Tanaka, and H. Suga. Time-invariant oxygen cost of mechanical energy in dog left ventricle: consistency and inconsistency of time-varying elastance model with myocardial energetics. Circ. Res. 64: 764–778 (1989).PubMedGoogle Scholar
  39. 39).
    C. L. Gibbs, I.R. Wendt, G. Kotsanas, and I.R. Young. The energy cost of relaxation in control and hypertrophic rabbit papillary muscles. Heart Vessels. 5: 198–205 (1990).PubMedCrossRefGoogle Scholar
  40. 40).
    J. Araki, H. Matsubara, J. Shimizu, T. Mikane, S. Mohri, J. Mizuno, M. Takaki, T. Ohe, M. Hirakawa, and H. Suga. Weibull distribution function for cardiac contraction: integrative analysis. Am. J. Physiol. 277:H1940–1945 (1999).PubMedGoogle Scholar
  41. 41).
    S. Sugiura, N. Kobayakawa, H. Fujita, H. Yamashita, S. Momomura, S. Chaen, M. Omata, and H. Sugi. Comparison of unitary displacements and forces between 2 cardiac myosin isoforms by the optical trap technique: molecular basis for cardiac adaptation. Circ. Res. 82: 1029–1034 (1998).PubMedGoogle Scholar
  42. 42).
    S. Sugiura. Actin-myosin interaction. Cardiovasc. Res. 44:266–273 (1999).PubMedCrossRefGoogle Scholar
  43. 43).
    T. Yanagida, S. Esaki, AH. Iwane, Y. Inoue, A. Ishijima, K. Kitamura, H. Tanaka, and M. Tokunaga. Single-motor mechanics and models of the myosin motor. Philos. Trans. R. Soc. Land. B. Biol. Sci. 355:441–447 (2000).CrossRefGoogle Scholar
  44. 44).
    K. Kitamura and T. Yanagida. Stochastic properties of actomyosin motor. BiosSystems 71: 101–110 (2003).CrossRefGoogle Scholar
  45. 45).
    H. Suga, O. Yamada, Y. Goto, and Y. Igarashi. Oxygen consumption and pressure-volume area of abnormal contractions in canine heart. Am. J. Physiol. 246: H154–H160 (1984).PubMedGoogle Scholar
  46. 46).
    H Suga. Mechanoenergetic estimation of multiple crossbridge steps per ATP in beating heart. Jpn. J. Physiol. (in press).Google Scholar
  47. 47).
    T. W. Taylor, Y. Goto, and H. Suga. Variable cross-bridge cycling-ATP coupling accounts for cardiac mechanoenergetics. Am. J. Physiol. 264: H994–1004 (1993).PubMedGoogle Scholar
  48. 48).
    J. Shimizu, J. Araki, J. Mizuno, S. Lee, Y. Syuu, S. Hosogi, S. Mohri, T. Mikane, M. Takaki, T.W. Taylor, and H. Suga. A new integrative method to quantify total Ca2+ handling and futile Ca2+ cycling in failing hearts. Am. J. Physiol. 275: H2325–2333 (1998).PubMedGoogle Scholar
  49. 49).
    J. Araki, S. Mohri, G. Iribe, J. Shimizu, and H. Suga. Total Ca2+ handling for E-C coupling in the whole heart: an integrative analysis. Can. J. Physiol. Pharmacol. 79: 87–92 (2001).PubMedCrossRefGoogle Scholar
  50. 50).
    J. Araki, J. Shimizu, G. Iribe, S. Mohri, T. Kiyooka, Y. Oshima, W. Fujinaka, Y. Doi, and H. Suga. Assessment of total Ca2+ handling for excitation-contraction coupling in beating left ventricle. J. Mech. Med. Biol. 1: 123–138 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Hiroyuki Suga
    • 1
  1. 1.National Cardiovascular Center Research InstituteSuita, OsakaJapan

Personalised recommendations