Advertisement

What is the Nature of High School Students' Conceptions and Misconceptions About Probability?

  • Carmen Batanero
  • Ernesto Sanchez
Part of the Mathematics Education Library book series (MELI, volume 40)

Keywords

Conditional Probability High School Student Sample Space Secondary School Student Educational Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batanero, C., Estepa, A., Godino, J. D. & Green, D. R. (1996) Intuitive strategies and preconceptions about association in contingency tables. Journal for Research in Mathematics Education, 27, 151–169.CrossRefGoogle Scholar
  2. Batanero, C., Godino, J. D., & Navarro-Pelayo, V. (1997). Effect of the implicit combinatorial model on combinatorial reasoning in secondary school pupils. Educational Studies in Mathematics, 32, 181–199.CrossRefGoogle Scholar
  3. Batanero, C., & Serrano, L. (1999). The meaning of randomness for secondary students. Journal for Research in Mathematics Education, 30, 558–567.CrossRefGoogle Scholar
  4. Batanero, C., Serrano, L., & Garfield, J. B. (1996). Heuristics and biases in secondary school students' reasoning about probability. In L. Puig & A. Gutiérrez (Eds.), Proceedings of the 20 th conference of the International Group for the Psychology of Mathematics Education (Vol.2, pp. 51–58). Valencia, Spain: University of Valencia.Google Scholar
  5. Batanero, C., Tauber, L., & Sánchez, L. (2004). Students' reasoning about the normal distribution. In D. Ben-Zvi & J. Garfield(Eds.), The Challenge of developing statistical literacy, reasoning and thinking (pp. 257–276). Dordrecht, The Netherlands: Kluwer.Google Scholar
  6. Bar-Hillel, M., & Falk, R. (1982) Some teasers concerning conditional probabilities. Cognition, 11, 109–122.CrossRefGoogle Scholar
  7. Borovcnik, M., & Peard, R. (1996). Probability. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook in mathematics education (Part 1, pp. 239–288). Dordrecht, The Netherlands: Kluwer.Google Scholar
  8. Chapman, L. J., & Chapman, J. P. (1969). Illusory correlation as an obstacle to the use of valid psycho diagnostic signs. Journal of Abnormal Psychology, 74, 271–280.Google Scholar
  9. Coutinho, C. (2001). Introduction aux situations aléatoires dés le Collége: de la modélisation à la simulation d'expériences de Bernoulli dans l'environment informatique Cabri-géomètre-II. [Introduction to random situations in high school: From modeling to simulation of Bernoulli experiences with Cabrigéomètre-II]. Unpublished Doctoral Dissertation, University of Grénoble, France.Google Scholar
  10. Dubois, J. G. (1984). Une systematique des configurations combinatoires simples [A system of simple combinatorial configurations]. Educational Studies in Mathematics, 15, 37–57.CrossRefGoogle Scholar
  11. Falk, R. (1979). Revision of probability and the time axis. In Proceedings of the third International Conference for the Psychology of Mathematics Education (pp. 64–66). Warwick, U K: Organising Committee.Google Scholar
  12. Falk, R. (1989). Inference under uncertainty via conditional probabilities. In R. Morris (Ed.), Studies in mathematics education: The teaching of statistics (Vol. 7, pp. 175–184). Paris: UNESCOGoogle Scholar
  13. Feller, W. (1968). An introduction to probability theory and its applications (Vol. 1). New York: Wiley.Google Scholar
  14. Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children. Dordrecht, The Netherlands: Kluwer.Google Scholar
  15. Fischbein, E. (1990). Training teachers to teach statistics. In A. Hawkins (Ed.), Training teachers to teach statistics (pp. 48–57). Voorburg: International Statistical Institute.Google Scholar
  16. Fischbein, E. & Gazit, A. (1988). The combinatorial solving capacity in children and adolescents. Zentralblatt für Didaktik de Mathematik, 5, 193–198.Google Scholar
  17. Fischbein, E., & Grossman, A. (1997). Schemata and intuitions in combinatorial reasoning. Educational Studies in Mathematics, 34, 27–47.CrossRefGoogle Scholar
  18. Fischbein, E., Nello, M. S., & Marino, M. S. (1991). Factors affecting probabilistic judgments in children in adolescence. Educational Studies in Mathematics, 22, 523–549.CrossRefGoogle Scholar
  19. Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht, The Netherlands: Reidel.Google Scholar
  20. Garfield, J. B. (1995). How students learn statistics. International Statistical Review, 63(1), 23–54.Google Scholar
  21. Girard, J. C. (1997). Modélisation, simulation et expérience aléatoire [Modelling, simulation and random experience]. In Enseigner les probabilités au lycée (pp. 73–76). Reims: Commission Inter-IREM Statistique et Probabilités.Google Scholar
  22. Gras, R., & Totohasina, A. (1995). Chronologie et causalité, conceptions sources d'obstacles épistémologiques à la notion de probabilité conditionnelle [Chronology and causality, conceptions sources of epistemological obstacles in the notion of conditional probability]. Recherches en Didactique des Mathématiques, 15(1), 49–95.Google Scholar
  23. Green, D. R. (1983). A survey of probability concepts in 3,000 pupils aged 11–16 years. In D. R. Grey, P. Holmes, & G. M. Constable (Eds.), Proceedings of the First International Conference on Teaching of Statistics (pp. 766–783). Sheffield, UK: Teaching Statistics Trust.Google Scholar
  24. Green, D. R. (1989). Schools students' understanding of randomness. In R. Morris (Ed.), Studies in mathematics education: The teaching of statistics (Vol. 7, pp. 27–39). Paris: UNESCO.Google Scholar
  25. Heitele, D. (1975). An epistemological view on fundamental stochastic ideas. Educational Studies in Mathematics, 6, 187–205.CrossRefGoogle Scholar
  26. Hirsch, L. & O'Donnell, A. (2001). Representativeness in statistical reasoning: Identifying and assessing misconceptions. Journal of Statistics Education 9(2). [Online: www.amstat.org/publicaions/jse/v9n2]Google Scholar
  27. Huck, S., Cross, T. L., & Clark, S. B. (1986). Overcoming misconceptions about z-scores. Teaching Statistics, 8(2), 38–40.Google Scholar
  28. Inhelder, B., & Piaget, J. (1955). De la logique de l'enfant á la logique de l'adolescent [The growth of logical thinking from childhood to adolescence]. Paris: Presses Universitaries de France.Google Scholar
  29. Jenkins, H. M., & Ward, W. C. (1965). Judgment of contingency between responses and outcomes. Psychological Monographs, 79, 1–17.Google Scholar
  30. Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. Cambridge: Cambridge University.Google Scholar
  31. Konold, C. (1989). Informal conceptions of probability. Cognition and instruction, 6, 59–98.CrossRefGoogle Scholar
  32. Konold, C. (1991). Understanding students' beliefs about probability. In E. Von Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 139–156). Dordrecht, The Netherlands: Kluwer.Google Scholar
  33. Lecoutre M. P. (1992). Cognitive models and problem spaces in “purely random” situations. Educational Studies in Mathematics, 23, 557–568.CrossRefGoogle Scholar
  34. Lecoutre, M. P., & Durand, J. L. (1988). Jugéments probabilistes et modèles cognitifs: étude d'une situation aléatoire [Probabilistic judgments and cognitive models: Study of a random situation]. Educational Studies in Mathematics, 19, 357–368.CrossRefGoogle Scholar
  35. Lecoutre M. P., & Fischbein E. (1998). Evolution avec l'âge de “misconceptions” dans les intuitions probabilistes en France et en Israël [Evolution with age of probabilistic intuitions in France and Israel]. Recherches en Didactique des Mathrmatiques, 18, 311–332.Google Scholar
  36. Lipson, K. (1994). Understanding the role of computer based technology in developing fundamental concepts of statistical inference. In Proceedings of the Fourth International Conference on Teaching Statistics (Vol. 1, pp. 65–72). Marrakech, Morocco: The National Institute of Statistics and Applied Economics.Google Scholar
  37. Lipson, K. (1997). What do students gain from computer simulation exercises? In J. B. Garfield & G. Burrill (Eds.), Research on the role of technology in teaching and learning statistics (pp. 137–150). Voorburg: International Statistical Institute.Google Scholar
  38. Lipson, K. (2002). Students' understanding of variability in a probability environment. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics. CapeTown, South Africa [CD-ROM]. Voorburg, The Netherlands: International Statistical Institute.Google Scholar
  39. Mills, J. (2002), Using computer simulation methods to teach statistics: A review of the literature, Journal of Statistics Education 10(1). [Online: http://www.amstat.org/publications/jse/v10n1/mills.html].Google Scholar
  40. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA; Author.Google Scholar
  41. Piaget, J. & Inhelder, B. (1951), La genèse de l'idée de hasard chez l'enfant [The idea of chance in children]. Paris: Presses Universitaires de France.Google Scholar
  42. Rubin, A., Bruce, B., & Tenney, Y. (1991). Learning about sampling: Trouble at the core of statistics. In D. Vere-Jones (Ed.), Proceedings of the Third International Conference on Teaching Statistics (pp. 314–319). Voorburg: International Statistical Institute.Google Scholar
  43. Sáenz, C. (1998). Teaching probability for conceptual change. Educational Studies in Mathematics, 35: 233–254.CrossRefGoogle Scholar
  44. Sánchez, E., & Hernández, R. (2003). Variables de tarea en problems asociados a la regla del product en probabilidad [Task variables in product rule problems in probability]. In E. Filloy (Coord.), Matemática educativa, aspects de la investigación actual (pp. 295–313). México: Fondo de Cultura Económica.Google Scholar
  45. Shaughnessy, J. M. (1983). Misconceptions of probability, systematic and otherwise: Teaching probability and statistics so as to overcome some misconceptions. In D. R. Grey, P. Holmes, V. Barnett, & G. M. Constable (Eds.), Proceedings of the First International Conference on Teaching Statistics (pp. 784–801). Sheffield, UK: Teaching Statistics Trust.Google Scholar
  46. Shaughnessy, J. M. (1992). Research in probability and statistics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 465–494). New York: Macmillan.Google Scholar
  47. Shaughnessy, J. M., & Ciancetta, M. (2002). Students' understanding of variability in a probability environment. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on the Teaching of Statistics, CapeTown, South Africa [CD-ROM]. Voorburg, The Netherlands: International Statistical Institute.Google Scholar
  48. Shin, K. (1996). Statgraphics Guide for Windows and DOS: Irwin statistical software series (Vol. 4). Columbus, OH: Irwin/McGraw-Hill.Google Scholar
  49. Tarr, J. E., & Jones, G. A. (1997). A framework for assessing middle school students' thinking in conditional probability and independence. Mathematics Education Research Journal, 9, 39–59.Google Scholar
  50. Toohey, P. G. (1995). Adolescent perceptions of the concept of randomness. Unpublished master's thesis, University of Waikato, New Zealand.Google Scholar
  51. Watson, J. M. & Moritz, J. (2000). Developing concepts of sampling. Journal for Research in Mathematics Education, 31, 44–70.CrossRefGoogle Scholar
  52. Well, A.D., Pollatsek, A., & Boyce, S. J. (1990). Understanding the effects of the sample size on the variability of the means. Organizational Behavior and Human Decision Processes, 47, 289–312.CrossRefGoogle Scholar
  53. Wild, C., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry (with discussion). International Statistical Review, 67(3), 223–265.Google Scholar
  54. Yates, D., Moore, D., & McCabe, G. (1999). The practice of statistics. New York: Freeman.Google Scholar
  55. Zimmerman, G. M. (2002). Students reasoning about probability simulation during instruction. Unpublished doctoral dissertation, Illimois State University, Normal.Google Scholar
  56. Zimmerman, G. M., & Jones, G. A. (2002). Probability simulation. What meaning does it have for high school students? Canadian Journal of Science, Mathematics and Technology, 2, 221–236.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Carmen Batanero
  • Ernesto Sanchez

There are no affiliations available

Personalised recommendations