Generation, Structure and Function of the Isoforms
  • Jennifer A. Doll
  • Gerald A. Soff
Part of the Cancer Treatment and Research book series (CTAR, volume 126)


Vascular Endothelial Growth Factor Endothelial Cell Proliferation Angiogenesis Inhibitor Lewis Lung Carcinoma Endothelial Cell Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Folkman, J. Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182–6 (1971).PubMedCrossRefGoogle Scholar
  2. 2.
    Bouck, N., Stellmach, V. & Hsu, S. C. How tumors become angiogenic. Adv Cancer Res 69, 135–74 (1996).PubMedCrossRefGoogle Scholar
  3. 3.
    Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–64 (1996).PubMedCrossRefGoogle Scholar
  4. 4.
    Polverini, P. J. The pathophysiology of angiogenesis. Crit Rev Oral Biol Med 6, 230–47 (1995).PubMedCrossRefGoogle Scholar
  5. 5.
    Jimenez, B. & Volpert, O. V. Mechanistic insights on the inhibition of tumor angiogenesis. J Mol Med 78, 663–72 (2001).PubMedCrossRefGoogle Scholar
  6. 6.
    Adams, J. C. & Lawler, J. The thrombospondins. Int J Biochem Cell Biol 36, 961–8 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    Tombran-Tink, J. & Barnstable, C. J. PEDF: a multifaceted neurotrophic factor. Nat Rev Neurosci 4, 628–36 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    O'Reilly, M. S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–28 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    O'Reilly, M. S., Holmgren, L., Chen, C. & Folkman, J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 2, 689–92 (1996).PubMedCrossRefGoogle Scholar
  10. 10.
    Sottrup-Jensen, L. Claeys, H. Zajdel, M., Petersen, T.E., Magnusson, S. in Progress in Chemical Fibrinolysis and Thrombolysis (ed. Davidson, J. F., Rowan, RIMI, Samama, M.M., Desnoyers, P.C.) 191–209 (Raven Press, New York, 1978).Google Scholar
  11. 11.
    Claesson-Welsh, L. et al. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci USA 95, 5579–83 (1998).PubMedCrossRefGoogle Scholar
  12. 12.
    Holmgren, L., O'Reilly, M. S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1, 149–53 (1995).PubMedCrossRefGoogle Scholar
  13. 13.
    Wu, Z., O'Reilly, M. S., Folkman, J. & Shing, Y. Suppression of tumor growth with recombinant murine angiostatin. Biochem Biophys Res Commun 236, 651–4 (1997).PubMedCrossRefGoogle Scholar
  14. 14.
    Cao, Y. et al. Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases [published erratum appears in J Clin Invest 1998 Dec 1;102(11):2031]. J Clin Invest 101, 1055–63 (1998).PubMedGoogle Scholar
  15. 15.
    Gately, S. et al. Human prostate carcinoma cells express enzymatic activity that converts human plasminogen to the angiogenesis inhibitor, angiostatin. Cancer Res 56, 4887–90 (1996).PubMedGoogle Scholar
  16. 16.
    Moser, T. L. et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA 96, 2811–6 (1999).PubMedCrossRefGoogle Scholar
  17. 17.
    Wahl, M. L., Owen, C. S. & Grant, D. S. Angiostatin induces intracellular acidosis and anoikis in endothelial cells at a tumor-like low pH. Endothelium 9, 205–16 (2002).PubMedCrossRefGoogle Scholar
  18. 18.
    Eriksson, K., Magnusson, P., Dixelius, J., Claesson-Welsh, L. & Cross, M. J. Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal transduction pathways. FEBS Lett 536, 19–24 (2003).PubMedCrossRefGoogle Scholar
  19. 19.
    Hajitou, A. et al. The antitumoral effect of endostatin and angiostatin is associated with a down-regulation of vascular endothelial growth factor expression in tumor cells. Faseb J 16, 1802–4 (2002).PubMedGoogle Scholar
  20. 20.
    Lannutti, B. J., Gately, S. T., Quevedo, M. E., Soff, G. A. & Paller, A. S. Human angiostatin inhibits murine hemangioendothelioma tumor growth in vivo. Cancer Res 57, 5277–80 (1997).PubMedGoogle Scholar
  21. 21.
    Kirsch, M. et al. Angiostatin suppresses malignant glioma growth in vivo. Cancer Res 58, 4654–9 (1998).PubMedGoogle Scholar
  22. 22.
    Tanaka, T., Cao, Y., Folkman, J. & Fine, H. A. Viral vectortargeted antiangiogenic gene therapy utilizing an angiostatin complementary DNA. Cancer Res 58, 3362–9 (1998).PubMedGoogle Scholar
  23. 23.
    Ishikawa, H. et al. Antiangiogenic gene therapy for hepatocellular carcinoma using angiostatin gene. Hepatology 37, 696–704 (2003).PubMedCrossRefGoogle Scholar
  24. 24.
    Schmitz, V. et al. Treatment of colorectal and hepatocellular carcinomas by adenoviral mediated gene transfer of endostatin and angiostatin-like molecule in mice. Gut 53, 561–7 (2004).PubMedCrossRefGoogle Scholar
  25. 25.
    Tao, K. S., Dou, K. F. & Wu, X. A. Expression of angiostatin cDNA in human hepatocellular carcinoma cell line SMMC-7721 and its effect on implanted carcinoma in nude mice. World J Gastroenterol 10, 1421–4 (2004).PubMedGoogle Scholar
  26. 26.
    Lalani, A. S. et al. Anti-tumor efficacy of human angiostatin using liver-mediated adenoassociated virus gene therapy. Mol Ther 9, 56–66 (2004).PubMedCrossRefGoogle Scholar
  27. 27.
    You, W. K. et al. Characterization and biological activities of recombinant human plasminogen kringle 1–3 produced in Escherichia coli. Protein Expr Purif 36, 1–10 (2004).PubMedCrossRefGoogle Scholar
  28. 28.
    Yokoyama, Y., Dhanabal, M., Griffloen, A. W., Sukhatme, V. P. & Ramakrishnan, S. Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth. Cancer Res 60, 2190–6 (2000).PubMedGoogle Scholar
  29. 29.
    Griscelli, F. et al. Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc Natl Acad Sci U S A 95, 6367–72 (1998).PubMedCrossRefGoogle Scholar
  30. 30.
    Chen, Q. R., Kumar, D., Stass, S. A. & Mixson, A. J. Liposomes completed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res 59, 3308–12 (1999).PubMedGoogle Scholar
  31. 31.
    Gabison, E. et al. Anti-angiogenic role of angiostatin during corneal wound healing. Exp Eye Res 78, 579–89 (2004).PubMedCrossRefGoogle Scholar
  32. 32.
    Kim, J. M. et al. Angiostatin gene transfer as an effective treatment strategy in marine collagen-induced arthritis. Arthritis Rheum 46, 793–801 (2002).PubMedCrossRefGoogle Scholar
  33. 33.
    Sumariwalla, P. F., Cao, Y., Wu, H. L., Feldmann, M. & Paleolog, E. M. The angiogenesis inhibitor protease-activated kringles 1–5 reduces the severity of murine collagen-induced arthritis. Arthritis Res Ther 5, R32–9 (2003).PubMedCrossRefGoogle Scholar
  34. 34.
    Dabrosin, C., Gyorffy, S., Margetts, P., Ross, C. & Gauldie, J. Therapeutic effect of angiostatin gene transfer in a murine model of endometriosis. Am J Pathol 161, 909–18 (2002).PubMedGoogle Scholar
  35. 35.
    Bachman, F. in Hemostasis and Thrombosis. Basic Principles and Clinical Practice (ed. Colman, R. W., Hirsh, J., Marder, V.J., Clowes, A.W., George, J.N.) 275–320 (Lippincott, Williams, and Wilkens, Philadelphia, 2001).Google Scholar
  36. 36.
    Wojtukiewicz, M. Z., Sierko, E., Klement, P. & Rak, J. The hemostatic system and angiogenesis in malignancy. Neoplasia 3, 371–84 (2001).PubMedCrossRefGoogle Scholar
  37. 37.
    Kohli, M., Kaushal, V. & Mehta, P. Role of coagulation and fibrinolytic system in prostate cancer. Semin Thromb Hemost 29, 301–8 (2003).PubMedCrossRefGoogle Scholar
  38. 38.
    Rijken, D. C. & Collen, D. Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture. J Biol Chem 256, 7035–41 (1981).PubMedGoogle Scholar
  39. 39.
    Neuman, T., Stephens, R. W., Salonen, E. M., Timmusk, T. & Vaheri, A. Induction of morphological differentiation of human neuroblastoma cells is accompanied by induction of tissue-type plasminogen activator. J Neurosci Res 23, 274–81 (1989).PubMedCrossRefGoogle Scholar
  40. 40.
    Bizik, J., Lizonova, A., Stephens, R. W., Grofova, M. & Vaheri, A. Plasminogen activation by t-PA on the surface of human melanoma cells in the presence of alpha 2-macroglobulin secretion. Cell Regul 1, 895–905 (1990).PubMedGoogle Scholar
  41. 41.
    Bizik, J., Stephens, R. W., Grofova, M. & Vaheri, A. Binding of tissue-type plasminogen activator to human melanoma cells. J Cell Biochem 51, 326–35 (1993).PubMedCrossRefGoogle Scholar
  42. 42.
    McColl, B. K. et al. Plasmin activates the lymphangiogenic growth factors VEGF-C and VEGF-D. J Exp Med 198, 863–8 (2003).PubMedCrossRefGoogle Scholar
  43. 43.
    Stack, M. S., Gately, S., Bafetti, L. M., Enghild, J. J. & Soff, G. A. Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation. Biochem J 340, 77–84 (1999).PubMedCrossRefGoogle Scholar
  44. 44.
    Tarui, T., Majumdar, M., Miles, L. A., Ruf, W. & Takada, Y. Plasmin-induced migration of endothelial cells. A potential target for the anti-angiogenic action of angiostatin. J Biol Chem 277, 33564–70 (2002).PubMedCrossRefGoogle Scholar
  45. 45.
    Muracciole, X. et al. PAI-1 and EGFR expression in adult glioma tumors: toward a molecular prognostic classification. Int J Radiat Oncol Biol Phys 52, 592–8 (2002).PubMedCrossRefGoogle Scholar
  46. 46.
    Hornm, L. C. et al. Clinical relevance of urokinase-type plasminogen activator and its inhibitor type 1 (PAI-1) in squamous cell carcinoma of the uterine cervix. Aust N Z J Obstet Gynaecol 42, 383–6 (2002).Google Scholar
  47. 47.
    Gately, S. et al. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci U S A 94, 10868–72 (1997).PubMedCrossRefGoogle Scholar
  48. 48.
    Wang, H. et al. Cell surface-dependent generation of angiostatin4.5. Cancer Res 64, 162–8 (2004).PubMedCrossRefGoogle Scholar
  49. 49.
    Wang, H., Doll, J.A., Jiang, K., Cundiff, D.L., Soff, G.A. Differential Binding of Plasminogen and Angiostatin4.5 to Cell Surface Beta-Actin: Implications for Cancer-Mediated Angiogenesis. (submitted).Google Scholar
  50. 50.
    Cao, Y. et al. Kringle domains of human angiostatin. Characterization of the antiproliferative activity on endothelial cells. J Biol Chem 271, 29461–7 (1996).PubMedCrossRefGoogle Scholar
  51. 51.
    Cao, Y. et al. Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem 272, 22924–8 (1997).PubMedCrossRefGoogle Scholar
  52. 52.
    O'Reilly, M. S., Wiederschain, D., Stetler-Stevenson, W. G., Folkman, J. & Moses, M. A. Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 274, 29568–71 (1999).PubMedCrossRefGoogle Scholar
  53. 53.
    Patterson, B. C. & Sang, Q. A. Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem 272, 28823–5 (1997).PubMedCrossRefGoogle Scholar
  54. 54.
    Cornelius, L. A. et al. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol 161, 6845–52 (1998).PubMedGoogle Scholar
  55. 55.
    Lijnen, H. R., Ugwu, F., Bini, A. & Collen, D. Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry 37, 4699–702 (1998).PubMedCrossRefGoogle Scholar
  56. 56.
    Dong, Z., Kumar, R., Yang, X. & Fidler, I. J. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88, 801–10 (1997).PubMedCrossRefGoogle Scholar
  57. 57.
    Jurasz, P., Alonso, D., Castro-Blanco, S., Murad, F. & Radomski, M. W. Generation and role of angiostatin in human platelets. Blood 102, 3217–23 (2003).PubMedCrossRefGoogle Scholar
  58. 58.
    Falcone, D. J., Khan, K. M., Layne, T. & Fernandes, L. Macrophage formation of angiostatin during inflammation. A byproduct of the activation of plasminogen. J Biol Chem 273, 31480–5 (1998).PubMedCrossRefGoogle Scholar
  59. 59.
    Heidtmann, H. H. et al. Generation of angiostatin-like fragments from plasminogen by prostate-specific antigen. Br J Cancer 81, 1269–73 (1999).PubMedCrossRefGoogle Scholar
  60. 60.
    Morikawa, W. et al. Angiostatin generation by cathepsin D secreted by human prostate carcinoma cells. J Biol Chem 275, 38912–20 (2000).PubMedCrossRefGoogle Scholar
  61. 61.
    Li, F. et al. Human glioma cell BT325 expresses a proteinase that converts human plasminogen to kringle 1–5-containing fragments. Biochem Biophys Res Commun 278, 821–5 (2000).PubMedCrossRefGoogle Scholar
  62. 62.
    Aggarwal, A., Munoz-Najar, U., Klueh, U., Shih, S. C. & Claffey, K. P. N-acetyl-cysteine promotes angiostatin production and vascular collapse in an orthotopic model of breast cancer. Am J Pathol 164, 1683–96 (2004).Google Scholar
  63. 63.
    Soff, G. A. Angiostatin and angiostatin-related proteins. Cancer Metastasis Rev 19, 97–107 (2000).PubMedCrossRefGoogle Scholar
  64. 64.
    Westphal, J. R. et al. Angiostatin generation by human tumor cell lines: involvement of plasminogen activators. Int J Cancer 86, 760–7 (2000).PubMedCrossRefGoogle Scholar
  65. 65.
    Soff, G. A. et al. Expression of plasminogen activator inhibitor type 1 by human prostate carcinoma cells inhibits primary tumor growth, tumor-associated angiogenesis, and metastasis to lung and liver in an athymic mouse model. J Clin Invest 96, 2593–600 (1995).PubMedGoogle Scholar
  66. 66.
    Chen, C., Parangi, S., Tolentino, M. J. & Folkman, J. A strategy to discover circulating angiogenesis inhibitors generated by human tumors. Cancer Res 55, 4230–3 (1995).PubMedGoogle Scholar
  67. 67.
    Stathakis, P. et al. Angiostatin formation involves disulfide bond reduction and proteolysis in kringle 5 of plasmin. J Biol Chem 274, 8910–6 (1999).PubMedCrossRefGoogle Scholar
  68. 68.
    Stathakis, P., Fitzgerald, M., Matthias, L. J., Chesterman, C. N. & Hogg, P. J. Generation of angiostatin by reduction and proteolysis of plasmin. Catalysis by a plasmin reductase secreted by cultured cells. J Biol Chem 272, 20641–5 (1997).PubMedCrossRefGoogle Scholar
  69. 69.
    Lay, A. J. et al. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase. Nature 408, 869–73 (2000).PubMedCrossRefGoogle Scholar
  70. 70.
    Soff, G. A. et al. Angiostatin4.5: A Naturally occurring human angiogenesis inhibitor. Proc Am Assoc Canc Res 40, #4088 (1999).Google Scholar
  71. 71.
    O'Mahony, C. A. et al. Angiostatin generation by human pancreatic cancer. J Surg Res 77, 55–8 (1998).PubMedCrossRefGoogle Scholar
  72. 72.
    Cao, R. et al. Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc Natl Acad Sci USA 96, 5728–33 (1999).PubMedCrossRefGoogle Scholar
  73. 73.
    Scapini, P. et al. Generation of biologically active angiostatin kringle 1–3 by activated human neutrophils. Jlmmunol 168, 5798–804 (2002).Google Scholar
  74. 74.
    Novokhatny, V. V., Kudinov, S. A. & Privalov, P. L. Domains in human plasminogen. J Mol Biol 179, 215–32 (1984).PubMedCrossRefGoogle Scholar
  75. 75.
    Lijnen, H. R., Van Hoef, B., Ugwu, F., Collen, D. & Roelants, I. Specific proteolysis of human plasminogen by a 24 kDa endopeptidase from a novel Chryseobacterium Sp. Biochemistry 39, 479–88 (2000).PubMedCrossRefGoogle Scholar
  76. 76.
    Lerch, P. G., Rickli, E. E., Lergier, W. & Gillessen, D. Localization of individual lysinebinding regions in human plasminogen and investigations on their complex-forming properties. Eur J Biochem 107, 7–13 (1980).PubMedCrossRefGoogle Scholar
  77. 77.
    Motta, A., Laursen, R. A., Llinas, M., Tulinsky, A. & Park, C. H. Complete assignment of the aromatic proton magnetic resonance spectrum of the kringle 1 domain from human plasminogen: structure of the ligand-binding site. Biochemistry 26, 3827–36 (1987).PubMedCrossRefGoogle Scholar
  78. 78.
    Cao, Y., Cao, R. & Veitonmaki, N. Kringle structures and antiangiogenesis. Curr Med Chem Anti-Canc Agents 2, 667–81 (2002).CrossRefGoogle Scholar
  79. 79.
    Geiger, J. H. & Cnudde, S. E. What the structure of angiostatin may tell us about its mechanism of action. J Thromb Haemost 2, 23–34 (2004).PubMedCrossRefGoogle Scholar
  80. 80.
    Ji, W. R. et al. Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. Faseb J 12, 1731–8 (1998).PubMedGoogle Scholar
  81. 81.
    O'Reilly, M. S. Angiostatin: an endogenous inhibitor of angiogenesis and of tumor growth. Exs 79, 273–94 (1997).PubMedGoogle Scholar
  82. 82.
    Kim, J. H. et al. The inhibitory effects of recombinant plasminogen kringle 1–3 on the neovascularization of rabbit cornea induced by angiogenin, bFGF, and VEGF. Exp Mol Med 31, 203–9 (1999).PubMedGoogle Scholar
  83. 83.
    Cao, Y. Therapeutic potentials of angiostatin in the treatment of cancer. Haematologica 84, 643–50 (1999).PubMedGoogle Scholar
  84. 84.
    Lee, T. H., Rhim, T. & Kim, S. S. Prothrombin kringle-2 domain has a growth inhibitory activity against basic fibroblast growth factor-stimulated capillary endothelial cells. J Biol Chem 273, 28805–12 (1998).PubMedCrossRefGoogle Scholar
  85. 85.
    Schulter, V. et al. Impact of apolipoprotein(a) on in vitro angiogenesis. Arterioscler Thromb Vasc Biol 21, 433–8 (2001).PubMedGoogle Scholar
  86. 86.
    Xin, L., Xu, R., Zhang, Q., Li, T. P. & Gan, R. B. Kringle 1 of human hepatocyte growth factor inhibits bovine aortic endothelial cell proliferation stimulated by basic fibroblast growth factor and causes cell apoptosis. Biochem Biophys Res Commun 277, 186–90 (2000).PubMedCrossRefGoogle Scholar
  87. 87.
    Sheppard, G. S. et al. Lysyl 4-aminobenzoic acid derivatives as potent small molecule mimetics of plasminogen kringle 5. Bioorg Med Chem Lett 14, 965–6 (2004).PubMedCrossRefGoogle Scholar
  88. 88.
    Dettin, M. et al. Synthetic peptides derived from the angiostatin K4 domain inhibit endothelial cell migration. Chembiochem 4, 1238–42 (2003).PubMedCrossRefGoogle Scholar
  89. 89.
    O'Reilly, M. S., Pirie-Shepherd, S., Lane, W. S. & Folkman, J. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science 285, 1926–8 (1999).PubMedCrossRefGoogle Scholar
  90. 90.
    Staton, C. A. et al. Alphastatin, a 24-amino acid fragment of human fibrinogen, is a potent new inhibitor of activated endothelial cells in vitro and in vivo. Blood 103, 601–6 (2004).PubMedCrossRefGoogle Scholar
  91. 91.
    Celerier, J., Cruz, A., Lamande, N., Gasc, J. M. & Corvol, P. Angiotensinogen and its cleaved derivatives inhibit angiogenesis. Hypertension 39, 224–8 (2002).PubMedCrossRefGoogle Scholar
  92. 92.
    Colorado, P. C. et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 60, 2520–6 (2000).PubMedGoogle Scholar
  93. 93.
    Kamphaus, G. D. et al. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 275, 1209–15 (2000).PubMedCrossRefGoogle Scholar
  94. 94.
    O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–85 (1997).PubMedCrossRefGoogle Scholar
  95. 95.
    Wen, W., Moses, M. A., Wiederschain, D., Arbiser, J. L. & Folkman, J. The generation of endostatin is mediated by elastase. Cancer Res 59, 6052–6 (1999).PubMedGoogle Scholar
  96. 96.
    Kim, Y. M. et al. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res 60, 5410–3 (2000).PubMedGoogle Scholar
  97. 97.
    Lee, S. J. et al. Endostatin binds to the catalytic domain of matrix metalloproteinase-2. FEBSLett 519, 147–52 (2002).CrossRefGoogle Scholar
  98. 98.
    Bootle-Wilbraham, C. A., Tazzyman, S., Marshall, J. M. & Lewis, C. E. Fibrinogen E-fragment inhibits the migration and tubule formation of human dermal microvascular endothelial cells in vitro. Cancer Res 60, 4719–24 (2000).PubMedGoogle Scholar
  99. 99.
    Colman, R. W., Jameson, B. A., Lin, Y., Johnson, D. & Mousa, S. A. Domain 5 of high molecular weight kininogen (kininostatin) down-regulates endothelial cell proliferation and migration and inhibits angiogenesis. Blood 95, 543–50 (2000).PubMedGoogle Scholar
  100. 100.
    Bello, L. et al. Simultaneous inhibition of glioma angiogenesis, cell proliferation, and invasion by a naturally occurring fragment of human metalloproteinase-2. Cancer Res 61, 8730–6 (2001).PubMedGoogle Scholar
  101. 101.
    Ferrara, N., Clapp, C. & Weiner, R. The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 129, 896–900 (1991).PubMedCrossRefGoogle Scholar
  102. 102.
    Ramchandran, R. et al. Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin. Biochem Biophys Res Commun 255, 735–9 (1999).PubMedCrossRefGoogle Scholar
  103. 103.
    Maeshima, Y. et al. Identification of the anti-angiogenic site within vascular basement membrane-derived tumstatin. J Biol Chem 276, 15240–8 (2001).PubMedCrossRefGoogle Scholar
  104. 104.
    Maeshima, Y. et al. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295, 140–3 (2002).PubMedCrossRefGoogle Scholar
  105. 105.
    Sudhakar, A. et al. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci U S A 100, 4766–71 (2003).PubMedCrossRefGoogle Scholar
  106. 106.
    Pike, S. E. et al. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 188, 2349–56 (1998).PubMedCrossRefGoogle Scholar
  107. 107.
    Pike, S. E. et al. Calreticulin and calreticulin fragments are endothelial cell inhibitors that suppress tumor growth. Blood 94, 2461–8 (1999).PubMedGoogle Scholar
  108. 108.
    Walter, J. J. & Sane, D. C. Angiostatin binds to smooth muscle cells in the coronary artery and inhibits smooth muscle cell proliferation and migration In vitro. Arterioscler Thromb Vase Biol 19, 2041–8 (1999).Google Scholar
  109. 109.
    Benelli, R. et al. Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. Faseb J 16, 267–9 (2002).PubMedGoogle Scholar
  110. 110.
    Benelli, R., Morini, M., Brigati, C., Noonan, D. M. & Albini, A. Angiostatin inhibits extracellular HIV-Tat-induced inflammatory angiogenesis. Int J Oncol 22, 87–91 (2003).PubMedGoogle Scholar
  111. 111.
    Peyruchaud, O., Serre, C. M., NicAmhlaoibh, R., Foumier, P. & Clezardin, P. Angiostatin inhibits bone metastasis formation in nude mice through a direct anti-osteoclastic activity. J Biol Chem 278, 45826–32 (2003).PubMedCrossRefGoogle Scholar
  112. 112.
    Wajih, N. & Sane, D. C. Angiostatin selectively inhibits signaling by hepatocyte growth factor in endothelial and smooth muscle cells. Blood 101, 1857–63 (2003).PubMedCrossRefGoogle Scholar
  113. 113.
    Redlitz, A., Daum, G. & Sage, E. H. Angiostatin diminishes activation of the mitogen-activated protein kinases ERK-1 and ERK-2 in human dermal microvascular endothelial cells. J Vase Res 36, 28–34 (1999).CrossRefGoogle Scholar
  114. 114.
    Gao, G. et al. Down-regulation of vascular endothelial growth factor and up-regulation of pigment epithelium-derived factor: a possible mechanism for the anti-angiogenic activity of plasminogen kringle 5. J Biol Chem 277, 9492–7 (2002).PubMedCrossRefGoogle Scholar
  115. 115.
    Lucas, R. et al. Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood 92, 4730–41 (1998).PubMedGoogle Scholar
  116. 116.
    Lu, H. et al. Kringle 5 causes cell cycle arrest and apoptosis of endothelial cells. Biochem Biophys Res Commun 258, 668–73 (1999).PubMedCrossRefGoogle Scholar
  117. 117.
    Hanford, H. A. et al. Angiostatin(4.5)-mediated apoptosis of vascular endothelial cells. Cancer Res 63, 4275–80 (2003).PubMedGoogle Scholar
  118. 118.
    Das, B., Mondragon, M. O., Sadeghian, M., Hatcher, V. B. & Norin, A. J. A novel ligand in lymphocyte-mediated cytotoxicity: expression of the beta subunit of H+ transporting ATP synthase on the surface of tumor cell lines. J Exp Med 180, 273–81 (1994).PubMedCrossRefGoogle Scholar
  119. 119.
    Veitonmaki, N. et al. Endothelial cell surface ATP synthase-triggered caspase-apoptotic pathway is essential for kl-5-induced antiangiogenesis. Cancer Res 64, 3679–86 (2004).PubMedCrossRefGoogle Scholar
  120. 120.
    Wahl, M. L., Moser, T. L. & Pizzo, S. V. Angiostatin and anti-angiogenic therapy in human disease. Recent Prog Horm Res 59, 73–104 (2004).PubMedCrossRefGoogle Scholar
  121. 121.
    Chen, Y. H. et al. Angiostatin antagonizes the action of VEGF-A in human endothelial cells via two distinct pathways. Biochem Biophys Res Commun 310, 804–10 (2003).PubMedCrossRefGoogle Scholar
  122. 122.
    Gupta, N. et al. Angiostatin effects on endothelial cells mediated by ceramide and RhoA. EMBO Rep 2, 536–40 (2001).PubMedGoogle Scholar
  123. 123.
    Sharma, M. R., Tuszynski, G. P. & Sharma, M. C. Angiostatin-induced inhibition of endothelial cell proliferation/apoptosis is associated with the down-regulation of cell cycle regulatory protein cdk5. J Cell Biochem 91, 398–409 (2004).PubMedCrossRefGoogle Scholar
  124. 124.
    Tarui, T., Miles, L. A. & Takada, Y. Specific interaction of angiostatin with integrin alpha(v)beta(3) in endothelial cells. J Biol Chem 276, 39562–8 (2001).PubMedCrossRefGoogle Scholar
  125. 125.
    Troyanovsky, B., Levchenko, T., Mansson, G., Matvijenko, O. & Holmgren, L. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol 152, 1247–54 (2001).PubMedCrossRefGoogle Scholar
  126. 126.
    Levchenko, T., Bratt, A., Arbiser, J. L. & Holmgren, L. Angiomotin expression promotes hemangioendothelioma invasion. Oncogene 23, 1469–73 (2004).PubMedCrossRefGoogle Scholar
  127. 127.
    Tuszynski, G. P., Sharma, M. R., Rothman, V. L. & Sharma, M. C. Angiostatin binds to tyrosine kinase substrate annexin II through the lysine-binding domain in endothelial cells. Microvasc Res 64, 448–62 (2002).PubMedCrossRefGoogle Scholar
  128. 128.
    Richardson, M. et al. Malignant ascites fluid (MAF), including ovarian-cancer-associated MAF, contains angiostatin and other factorss, which inhibit angiogenesis. Gynecol Oncol 86, 279–87 (2002).PubMedCrossRefGoogle Scholar
  129. 129.
    Sten-Linder, M. et al. Angiostatin fragments in urine from patients with malignant disease. Anticancer Res 19, 3409–14 (1999).PubMedGoogle Scholar
  130. 130.
    Cao, Y. et al. Elevated levels of urine angiostatin and plasminogen/plasmin in cancer patients. Int J Mol Med 5, 547–51 (2000).PubMedGoogle Scholar
  131. 131.
    Sack, R. A., Beaton, A. R. & Sathe, S. Diurnal variations in angiostatin in human tear fluid: a possible role in prevention of corneal neovascularization. Curr Eye Res 18, 186–93 (1999).PubMedCrossRefGoogle Scholar
  132. 132.
    Teicher, B. A., Sotomayor, E. A. & Huang, Z. D. Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res 52, 6702–4 (1992).PubMedGoogle Scholar
  133. 133.
    Teicher, B. A., Holden, S. A., Ara, G. & Northey, D. Response of the FSaII fibrosarcoma to antiangiogenic modulators plus cytotoxic agents. Anticancer Res. 13, 2101–6 (1993).PubMedGoogle Scholar
  134. 134.
    Teicher, B. A. et al. Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogenic agents. Int J Cancer 57, 920–5 (1994).PubMedGoogle Scholar
  135. 135.
    Teicher, B. A., Holden, S. A., Ara, G., Korbut, T. & Menon, K. Comparison of several antiangiogenic regimens alone and with cytotoxic therapies in the Lewis lung carcinoma. Cancer Chemother Pharmacol 38, 169–77 (1996).PubMedCrossRefGoogle Scholar
  136. 136.
    Wilczynska, U., Kucharska, A., Szary, J. & Szala, S. Combined delivery of an antiangiogenic protein (angiostatin) and an immunomodulatory gene (interleukin-12) in the treatment of murine cancer. Acta Biochim Pol 48, 1077–84 (2001).PubMedGoogle Scholar
  137. 137.
    Kerbel, R. S. A cancer therapy resistant to resistance. Nature 390, 335–6 (1997).PubMedCrossRefGoogle Scholar
  138. 138.
    Boehm, T., Folkman, J., Browder, T. & O'Reilly, M. S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–7 (1997).PubMedCrossRefGoogle Scholar
  139. 139.
    Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1, 27–31 (1995).PubMedCrossRefGoogle Scholar
  140. 140.
    Eskens, F. A. Angiogenesis inhibitors in clinical development; where are we now and where are we going? Br J Cancer 90, 1–7 (2004).PubMedCrossRefGoogle Scholar
  141. 141.
    Mauceri, H. J. et al. Combined effects of angiostatin and ionizing radiation in antitumor therapy. Nature 394, 287–91 (1998).PubMedCrossRefGoogle Scholar
  142. 142.
    Gorski, D. H. et al. Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposures to angiostatin. Cancer Res 58, 5686–9 (1998).PubMedGoogle Scholar
  143. 143.
    Mauceri, H. J. et al. Angiostatin potentiates cyclophosphamide treatment of metastatic disease. Cancer Chemother Pharmacol 50, 412–8 (2002).PubMedCrossRefGoogle Scholar
  144. 144.
    Galaup, A. et al. Combined effects of docetaxel and angiostatin gene therapy in prostate tumor model. Mol Ther 7, 731–40 (2003).PubMedCrossRefGoogle Scholar
  145. 145.
    Hanahan, D., Bergers, G. & Bergsland, E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 105, 1045–7 (2000).PubMedGoogle Scholar
  146. 146.
    Vacca, A. et al. Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood 94, 4143–55 (1999).PubMedGoogle Scholar
  147. 147.
    Klement, G. et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105, R15–24 (2000).PubMedCrossRefGoogle Scholar
  148. 148.
    Browder, T. et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60, 1878–86 (2000).PubMedGoogle Scholar
  149. 149.
    Gately, S. & Kerbel, R. Antiangiogenic scheduling of lower dose cancer chemotherapy. Cancer J 7, 427–36 (2001).PubMedGoogle Scholar
  150. 150.
    Sim, B. K. et al. A recombinant human angiostatin protein inhibits experimental primary and metastatic cancer. Cancer Res 57, 1329–34 (1997).PubMedGoogle Scholar
  151. 151.
    MacDonald, N. J., Murad, A. C., Fogler, W. E., Lu, Y. & Sim, B. K. The tumor-suppressing activity of angiostatin protein resides within kringles 1 to 3. Biochem Biophys Res Commun 264, 469–77 (1999).PubMedCrossRefGoogle Scholar
  152. 152.
    Meneses, P. I. et al. Simplified production of a recombinant human angiostatin derivative that suppresses intracerebral glial tumor growth. Clin Cancer Res 5, 3689–94 (1999).PubMedGoogle Scholar
  153. 153.
    Beerepoot, L. V. et al. Recombinant human angiostatin by twice-daily subcutaneous injection in advanced cancer: a pharmacokinetic and long-term safety study. Clin Cancer Res 9, 4025–33 (2003).PubMedGoogle Scholar
  154. 154.
    Nguyen, J. T., Wu, P., Clouse, M. E., Hlatky, L. & Terwilliger, E. F. Adeno-associated virus-mediated delivery of antiangiogenic factors as an antitumor strategy. Cancer Res 58, 5673–7 (1998).PubMedGoogle Scholar
  155. 155.
    Ambs, S., Dennis, S., Fairman, J., Wright, M. & Papkoff, J. Inhibition of tumor growth correlates with the expression level of a human angiostatin transgene in transfected B16F10 melanoma cells. Cancer Res 59, 5773–7 (1999).PubMedGoogle Scholar
  156. 156.
    Volpert, O. V. et al. Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats. J Clin Invest 98, 671–9 (1996).PubMedGoogle Scholar
  157. 157.
    Vogt, B. & Frey, F. J. Inhibition of angiogenesis in Kaposi's sarcoma by captopril. Lancet 349, 1148 (1997).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Jennifer A. Doll
    • 1
  • Gerald A. Soff
    • 1
  1. 1.Department of Medicine, Division of Hematology/Oncology and the Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicago

Personalised recommendations