Advertisement

Transforming Growth Factor Beta and Prostate Cancer

  • Brian Zhu
  • Natasha Kyprianou
Part of the Cancer Treatment and Research book series (CTAR, volume 126)

Keywords

Prostate Cancer Benign Prostatic Hyperplasia Prostate Cancer Cell Prostate Epithelial Cell Prostate Cancer Cell Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ; American Cancer Society. Cancer statistics, 2004. CA Cancer J Clin. 2004, 54: 8–29.PubMedCrossRefGoogle Scholar
  2. 2.
    Hellawell GO, Brewster SF. Growth factors and their receptors in prostate cancer. BJU Int. 2002; 89:230–40.PubMedCrossRefGoogle Scholar
  3. 3.
    Kyprianou N. Activation of TGF-β signaling in human prostate cancer cells suppresses tumorigenicity via deregulation of cell cycle progression and induction of caspase-1 mediated apoptosis: significance in prostate tumorigenesis. Prostate Cancer Prostatic Dis. 1999, 2:S18.PubMedCrossRefGoogle Scholar
  4. 4.
    Partin JV, Anglin IE, Kyprianou N. Quinazoline-based alpha 1-adrenoceptor antagonists induce prostate cancer cell apoptosis via TGF-β signalling and I kappa B alpha induction. Br J Cancer. 2003, 88:1615–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004, 303:848–51.PubMedCrossRefGoogle Scholar
  6. 6.
    Anzano MA, Roberts AB, Meyers CA, Komoriya A, Lamb LC, Smith JM, Sporn MB. Synergistic interaction of two classes of transforming growth factors from murine sarcoma cells. Cancer Res. 1982, 42:4776–8.].PubMedGoogle Scholar
  7. 7.
    Attisano L, Wrana JL. Signal transduction by the TGF-β superfamily. Science. 2002, 296:1646–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Massague J, Cheifetz S, Laiho M, Ralph DA, Weis FM, Zentella A. Transforming growth factor-β. Cancer Surv. 1992, 12:81–103.PubMedGoogle Scholar
  9. 9.
    Story MT, Hopp KA, Molter M. Expression of transforming growth factor β 1 (TGF β 1),-β 2, and-β 3 by cultured human prostate cells. J Cell Physiol. 1996, 169:97–107.PubMedCrossRefGoogle Scholar
  10. 10.
    Guo Y, Kyprianou N. Restoration of transforming growth factor β signaling pathway in human prostate cancer cells suppresses tumorigenicity via induction of caspase-1-mediated apoptosis. Cancer Res. 1999, 59:1366–71.PubMedGoogle Scholar
  11. 11.
    Gelman J, Garban H, Shen R, Ng C, Cai L, Rajfer J, Gonzalez-Cadavid NF. Transforming growth factor-β1 (TGF-βI) in penile and prostate growth in the rat during sexual maturation. J Androl. 1998, 19:50–7.PubMedGoogle Scholar
  12. 12.
    Untergasser G, Gander R, Rumpold H, Heinrich E, Plas E, Berger P. TGF-β cytokines increase senescence-associated β-galactosidase activity in human prostate basal cells by supporting differentiation processes, but not cellular senescence. Exp Gerontol. 2003, 38:1179–88.PubMedCrossRefGoogle Scholar
  13. 13.
    Burchardt T, Burchardt M, Chen MW, Cao Y, de la Taille A, Shabsigh A, Hayek O, Dorai T, Buttyan R. Transdifferentiation of prostate cancer cells to a neuroendocrine cell phenotype in vitro and in vivo. J Urol. 1999, 162:1800–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Lucia MS, Sporn MB, Roberts AB, Stewart LV, Danielpour D. The role of transforming growth factor-β1,-β2, and-β3 in androgen-responsive growth of NRP-152 rat prostatic epithelial cells. J Cell Physiol. 1998, 175:184–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Goswami MT, Desai KV, Kondaiah P. Comparative functional analysis of rat TGF-β1 and Xenopus laevis TGF-β5 promoters suggest differential regulations. J Mol Evol. 2003, 57:44–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Chimal-Monroy J, Diaz de Leon L. Expression of N-cadherin, N-CAM, fibronectin and tenascin is stimulated by TGF-β1, β2, β3 and β5 during the formation of precartilage condensations. Int J Dev Biol. 1999, 43:59–67.PubMedGoogle Scholar
  17. 17.
    Kondaiah P, Taira M, Vempati UD, Dawid IB. Transforming growth factor-β5 expression during early development of Xenopus laevis. Mech Dev. 2000, 95:207–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Dalkin AC, Gilrain JT, Bradshaw D, Myers CE. Activin inhibition of prostate cancer cell growth: selective actions on androgen-responsive LNCaP cells. Endocrinology. 1996, 137:5230–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Ying SY, Chuong CM, Lin S. Suppression of activin-induced apoptosis by novel antisense strategy in human prostate cancer cells. Biochem Biophys Res Commun. 1999, 265:669–73.PubMedCrossRefGoogle Scholar
  20. 20.
    Fujii Y, Kawakami S, Okada Y, Kageyama Y, Kihara K. Regulation of prostate-specific antigen by activin A in prostate cancer LNCaP cells. Am J Physiol Endocrinol Metab. 2004, 286:E927–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Carey JL, Sasur LM, Kawakubo H, Gupta V, Christian B, Bailey PM, Maheswaran S. Mutually antagonistic effects of androgen and activin in the regulation of prostate cancer cell growth. Mol Endocrinol. 2004, 18:696–707.PubMedCrossRefGoogle Scholar
  22. 22.
    Brubaker KD, Corey E, Brown LG, Vessella RL. Bone morphogenetic protein signaling in prostate cancer cell lines. J Cell Biochem. 2004, 91:151–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Autzen P, Robson CN, Bjartell A, Malcolm AJ, Johnson MI, Neal DE, Hamdy FC. Bone morphogenetic protein 6 in skeletal metastases from prostate cancer and other common human malignancies. Br J Cancer. 1998, 78:1219–23.PubMedGoogle Scholar
  24. 24.
    Paralkar VM, Vail AL, Grasser WA, Brown TA, Xu H, Vukicevic S, Ke HZ, Qi H, Owen TA, Thompson DD. Cloning and characterization of a novel member of the transforming growth factor-β/bone morphogenetic protein family. J Biol Chem. 1998, 273:13760–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Uchida K, Chaudhary LR, Sugimura Y, Adkisson HD, Hruska KA. Proprotein convertases regulate activity of prostate epithelial cell differentiation markers and are modulated in human prostate cancer cells. J Cell Biochem. 2003, 88:394–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Pan CX, Kinch MS, Kiener PA, Langermann S, Serrero G, Sun L, Corvera J, Sweeney CJ, Li L, Zhang S, Baldridge LA, Jones TD, Koch MO, Ulbright TM, Eble JN, Cheng L. PC cell-derived growth factor expression in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. Clin Cancer Res. 2004, 10:1333–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Bottner M, Suter-Crazzolara C, Schober A, Unsicker K. Expression of a novel member of the TGF-β superfamily, growth/differentiation factor-15/macrophage-inhibiting cytokine-1 (GDF-15/MIC-1) in adult rat tissues. Cell Tissue Res. 1999, 297:103–10.PubMedCrossRefGoogle Scholar
  28. 28.
    Hyatt BA, Yost HJ. The left-right coordinator: the role of Vgl in organizing left-right axis formation. Cell. 1998, 93:37–46.PubMedCrossRefGoogle Scholar
  29. 29.
    Steinkamp M, Geerling I, Seufferlein T, von Boyen G, Egger B, Grossmann J, Ludwig L, Adler G, Reinshagen M. Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells. Gastroenterology. 2003, 124:1748–57.PubMedCrossRefGoogle Scholar
  30. 30.
    Ikeda Y, Nagai A, Ikeda MA, Hayashi S. Increased expression of Mullerian-inhibiting substance correlates with inhibition of follicular growth in the developing ovary of rats treated with E2 benzoate. Endocrinology. 2002, 143:304–12.PubMedCrossRefGoogle Scholar
  31. 31.
    Massague J. TGF-β signal transduction. Annu Rev Biochem. 1998, 67:753–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-β superfamily. Endocr Rev. 2002, 23:787–823.PubMedCrossRefGoogle Scholar
  33. 33.
    Barrack ER. TGF β in prostate cancer: a growth inhibitor that can enhance tumorigenicity. Prostate. 1997, 31:61–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Sun PD, Davies DR. The cystine-knot growth-factor superfamily. Annu Rev Biophys Biomol Struct. 1995, 24:269–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Shi Y, Massague J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 2003, 113:685–700.PubMedCrossRefGoogle Scholar
  36. 36.
    Derynck R. TGF-β-receptor-mediated signaling. Trends Biochem Sci. 1994, 19:548–53.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang XF, Lin HY, Ng-Eaton E, Downward J, Lodish HF, Weinberg RA. Expression cloning and characterization of the TGF-β type III receptor. Cell. 1991, 67:797–805.PubMedCrossRefGoogle Scholar
  38. 38.
    Lopez-Casillas F, Cheifetz S, Doody J, Andres JL, Lane WS, Massague J. Structure and expression of the membrane proteoglycan pglycan, a component of the TGF-β receptor system. Cell. 1991, 67:785–95.PubMedCrossRefGoogle Scholar
  39. 39.
    Massague J, Attisano L, Wrana JL the TGF-β family and its composite receptors. Trends Cell Biol. 1994, 4:172–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Blobe GC, Schiemann WP, Pepin MC, Beauchemin M, Moustakas A, Lodish HF, O'Connor-McCourt MD. Functional roles for the cytoplasmic domain of the type III transforming growth factor beta receptor in regulating transforming growth factor beta signaling. J Biol Chem. 2001, 276:24627–37.PubMedCrossRefGoogle Scholar
  41. 41.
    Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature. 2003, 425:577–84PubMedCrossRefGoogle Scholar
  42. 42.
    Marquez RM, Singer MA, Takaesu NT, Waldrip WR, Kraytsberg Y, Newfeld SJ. Transgenic analysis of the Smad family of TGF-β signal transducers in Drosophila melanogaster suggests new roles and new interactions between family members. Genetics. 2001, 157:1639–48.PubMedGoogle Scholar
  43. 43.
    Inman GJ, Nicolas FJ, Hill CS. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity. Mol Cell. 2002, 10:283–94.PubMedCrossRefGoogle Scholar
  44. 44.
    Engel ME, McDonnell MA, Law BK, Moses HL. Interdependent SMAD and JNK signaling in transforming growth factor-p-mediated transcription. J Biol Chem. 1999, 274:37413–20PubMedCrossRefGoogle Scholar
  45. 45.
    Yu L, Hebert MC, Zhang YE. TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J. 2002, 21:3749–59.PubMedCrossRefGoogle Scholar
  46. 46.
    Perry KT, Anthony CT, Steiner MS. Immunohistochemical localization of TGF-β 1, TGF-β 2, and TGF-β 3 in normal and malignant human prostate. Prostate. 1997, 33:133–40.PubMedCrossRefGoogle Scholar
  47. 47.
    Perry KT, Anthony CT, Case T, Steiner MS. Transforming growth factor beta as a clinical biomarker for prostate cancer. Urology. 1997, 49:151–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee C, Sintich SM, Mathews EP, Shah AH, Kundu SD, Perry KT, Cho JS, Ilio KY, Cronauer MV, Janulis L, Sensibar JA. Transforming growth factor-β in benign and malignant prostate. Prostate. 1999, 39:285–90.PubMedCrossRefGoogle Scholar
  49. 49.
    Blanchere M, Saunier E, Mestayer C, Broshuis M, Mowszowicz I. Alterations of expression and regulation of transforming growth factor β in human cancer prostate cell lines. J Steroid Biochem Mol Biol. 2002, 82:297–304.PubMedCrossRefGoogle Scholar
  50. 50.
    Vousden KH. P53: death star. Cell. 2000, 103:691–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, and Piccolo S. Links between tumor suppressors: p53 is required for TGF-Pβ gene responses by cooperating with Smads. Cell. 2003, 113:301–14.PubMedCrossRefGoogle Scholar
  52. 52.
    Kyprianou N, Williams H, Peeling WB, Davies P, Griffiths K. Evaluation of biopsy techniques for androgen receptor assay in human prostatic tissue. Br J Urol. 1986, 58:41–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Zatelli MC, Rossi R, degli Uberti EC. Androgen influences transforming growth factor-β gene expression in human adrenocortical cells. J Clin Endocrinol Metab. 2000, 85:847–52.PubMedCrossRefGoogle Scholar
  54. 54.
    Kyprianou N, Isaacs JT. Identification of a cellular receptor for transforming growth factor-β in rat ventral prostate and its negative regulation by androgens. Endocrinology. 1988, 123:2124–31.PubMedCrossRefGoogle Scholar
  55. 55.
    Wikstrom P, Westin P, Stattin P, Damber JE, Bergh A. Early castration-induced upregulation of transforming growth factor betal and its receptors is associated with tumor cell apoptosis and a major decline in serum prostate-specific antigen in prostate cancer patients. Prostate. 1999, 38:268–77.PubMedCrossRefGoogle Scholar
  56. 56.
    Brodin G, ten Dijke P, Funa K, Heldin CH, Landstrom M. Increased smad expression and activation are associated with apoptosis in normal and malignant prostate after castration. Cancer Res. 1999, 59:2731–8PubMedGoogle Scholar
  57. 57.
    Hayes SA, Zarnegar M, Sharma M, Yang F, Peehl DM, ten Dijke P, Sun Z. SMAD3 represses androgen receptor-mediated transcription. Cancer Res. 2001, 61:2112–8.PubMedGoogle Scholar
  58. 58.
    Kang HY, Lin HK, Hu YC, Yeh S, Huang KE, Chang C. From transforming growth factor-beta signaling to androgen action: identification of Smad3 as an androgen receptor coregulator in prostate cancer cells. Proc Natl Acad Sci U S A. 2001, 98:3018–23.PubMedCrossRefGoogle Scholar
  59. 59.
    Chipuk JE, Cornelius SC, Pultz NJ, Jorgensen JS, Bonham MJ, Kim SJ, Danielpour D. The androgen receptor represses transforming growth factor-beta signaling through interaction with Smad3. J Biol Chem. 2002, 277:1240–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Gerdes MJ, Larsen M, Dang TD, Ressler SJ, Tuxhorn JA, Rowley DR. Regulation of rat prostate stromal cell myodifferentiation by androgen and TGF-β1. Prostate. 2004, 58:299–307.PubMedCrossRefGoogle Scholar
  61. 61.
    Wang T, Danielson PD, Li BY, Shah PC, Kim SD, Donahoe PK. The p21 (RAS) farnesyltransferase alpha subunit in TGF-β and activin signaling. Science. 1996, 271:1120–2.PubMedCrossRefGoogle Scholar
  62. 62.
    Khanna A. Concerted effect of transforming growth factor-β, cyclin inhibitor p21, and c-myc on smooth muscle cell proliferation. Am J Physiol Heart Circ Physiol. 2004, 286:H1133–40PubMedCrossRefGoogle Scholar
  63. 63.
    Lanvin O, Guglielmi P, Fuentes V, Gouilleux-Gruart V, Maziere C, Bissac E, Regnier A, Benlagha K, Gouilleux F, Lassoued K. TGF-β1 modulates Fas (APO-1/CD95)-mediated apoptosis of human pre-B cell lines. Eur J Immunol. 2003, 33:1372–81PubMedCrossRefGoogle Scholar
  64. 64.
    Stopa M, Anhuf D, Terstegen L, Gatsios P, Gressner AM, Dooley S. Participation of Smad2, Smad3, and Smad4 in transforming growth factor β (TGF-β)-induced activation of Smad7. THE TGF-3 response element of the promoter requires functional Smad binding element and E-box sequences for transcriptional regulation. J Biol Chem. 2000, 275:29308–17.PubMedCrossRefGoogle Scholar
  65. 65.
    Cardillo MR, Petrangeli E, Perracchio L, Salvatori L, Ravenna L, Di Silverio F. Transforming growth factor-beta expression in prostate neoplasia. Anal Quant Cytol Histol. 2000, 22:1–10.PubMedGoogle Scholar
  66. 66.
    Steiner MS, Barrack ER. Transforming growth factor-beta 1 overproduction in prostate cancer: effects on growth in vivo and in vitro. Mol Endocrinol. 1992, 6:15–25PubMedCrossRefGoogle Scholar
  67. 67.
    Teicher BA. Malignant cells, directors of the malignant process: role of transforming growth factor-β. Cancer Metastasis Rev. 2001, 20:133–43PubMedCrossRefGoogle Scholar
  68. 68.
    Kyprianou N, Isaacs JT. Expression of transforming growth factor-β in the rat ventral prostate during castration-induced programmed cell death. Mol Endocrinol. 1989, 3:1515–22.PubMedCrossRefGoogle Scholar
  69. 69.
    Martikainen P, Kyprianou N, Isaacs JT. Effect of transforming growth factor-β 1 on proliferation and death of rat prostatic cells. Endocrinology. 1990, 127:2963–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Guo Y, Jacobs SC, Kyprianou N. Down-regulation of protein and mRNA expression for transforming growth factor-β (TGF-β1) type I and type II receptors in human prostate cancer. Int J Cancer. 1997, 71:573–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Nerlich AG, Sauer U, Ruoss I, Hagedorn HG. High frequency of TGF-beta-receptor-II mutations in microdissected tissue samples from laryngeal squamous cell carcinomas. Lab Invest. 2003, 83:1241–51.PubMedCrossRefGoogle Scholar
  72. 72.
    Park C, Kim WS, Choi Y, Kim H, Park K. Effects of transforming growth factor beta (TGF-beta) receptor on lung carcinogenesis. Lung Cancer. 2002, 38:143–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995, 268:1336–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Tu WH, Thomas TZ, Masumori N, Bhowmick NA, Gorska AE, Shyr Y, Kasper S, Case T, Roberts RL, Shappell SB, Moses HL, Matusik RJ. The loss of TGF-β signaling promotes prostate cancer metastasis. Neoplasia. 2003, 5:267–77.PubMedGoogle Scholar
  75. 75.
    Sellers RS, LeRoy BE, Blomme EA, Tannehill-Gregg S, Corn S, Rosol TJ. Effects of transforming growth factor-β1 on parathyroid hormone-related protein mRNA expression and protein secretion in canine prostate epithelial, stromal, and carcinoma cells. Prostate. 2004, 58:366–73.PubMedCrossRefGoogle Scholar
  76. 76.
    Li Z, Habuchi T, Tsuchiya N, Mitsumori K, Wang L, Ohyama C, Sato K, Kamoto T, Ogawa O, Kato T. Increased risk of prostate cancer and benign prostatic hyperplasia associated with transforming growth factor-β 1 gene polymorphism at codonl0. Carcinogenesis. 2004, 25:237–40.PubMedCrossRefGoogle Scholar
  77. 77.
    Ilio KY, Sensibar JA, Lee C. Effect of TGF-β 1, TGF-alpha, and EGF on cell proliferation and cell death in rat ventral prostatic epithelial cells in culture. J Androl. 1995, 16:482–90.PubMedGoogle Scholar
  78. 78.
    Ling MT, Wang X, Tsao SW, Wong YC. Down-regulation of Id-1 expression is associated with TGF β 1-induced growth arrest in prostate epithelial cells. Biochem Biophys Acta. 2002, 1570:145–52.PubMedGoogle Scholar
  79. 79.
    Hisataki T, Itoh N, Suzuki K, Takahashi A, Masumori N, Tohse N, Ohmori Y, Yamada S, Tsukamoto T. Modulation of phenotype of human prostatic stromal cells by transforming growth factor-ps. Prostate. 2004, 58:174–82PubMedCrossRefGoogle Scholar
  80. 80.
    Lee JH, Wan XH, Song J, Kang JJ, Chung WS, Lee EH, Kim EK TGF-beta-induced apoptosis and reduction of Bcl-2 in human lens epithelial cells in vitro. Curr Eye Res. 2002, 25:147–53.PubMedCrossRefGoogle Scholar
  81. 81.
    Kanamaru C, Yasuda H, Fujita T. Involvement of Smad proteins in TGF-beta and activin A-induced apoptosis and growth inhibition of liver cells. Hepatol Res. 2002, 23:211–219.PubMedCrossRefGoogle Scholar
  82. 82.
    Hagimoto N, Kuwano K, Inoshima I, Yoshimi M, Nakamura N, Fujita M, Maeyama T, Hara N. TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells. J Immunol. 2002, 168:6470–8.PubMedGoogle Scholar
  83. 83.
    De Luca A, Weller M, Fontana A. TGF-beta-induced apoptosis of cerebellar granule neurons is prevented by depolarization. J Neurosci. 1996, 16:4174–85.PubMedGoogle Scholar
  84. 84.
    Zeng L, Rowland RG, Lele SM, Kyprianou N. Apoptosis incidence and protein expression of p53, TGF-β receptor II, p27, and Smad4 in benign, premalignant, and malignant human prostate. Hum Pathol. 2004, 35:290–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Bruckheimer EM, Kyprianou N. Dihydrotestosterone enhances transforming growth factor-beta-induced apoptosis in hormone-sensitive prostate cancer cells. Endocrinology. 2001, 142:2419–26.PubMedCrossRefGoogle Scholar
  86. 86.
    Kyprianou N, Bruckheimer EM, Guo Y. Cell proliferation and apoptosis in prostate cancer: significance in disease progression and therapy. Histol Histopathol. 2000, 15:1211–23.PubMedGoogle Scholar
  87. 87.
    Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, Cunha GR, Donjacour AA, Matusik RJ, Rosen JM. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A. 1995, 92:3439–43PubMedCrossRefGoogle Scholar
  88. 88.
    Shah AH, Tabayoyong WB, Kundu SD, Kim SJ, Van Parijs L, Liu VC, Kwon E, Greenberg NM, Lee C. Suppression of tumor metastasis by blockade of transforming growth factor β signaling in bone marrow cells through a retroviral-mediated gene therapy in mice. Cancer Res. 2002, 62:7135–8PubMedGoogle Scholar
  89. 89.
    Ikeda H, Yoshimoto T, Shida N, Miyoshi I, Nakayama K, Nakayama K, Oshima M, Taketo MM. Morphologic and molecular analysis of estrogen-induced pituitary tumorigenesis in targeted disruption of transforming growth factor-beta receptor type II and/or p27 mice. Endocrinology, 2001, 16:55–65.Google Scholar
  90. 90.
    Pierelli L, Marone M, Bonanno G, Mozzetti S, Rutella S, Morosetti R, Rumi C, Mancuso S, Leone G, Scambia G. Modulation of bcl-2 and p27 in human primitive proliferating hematopoietic progenitors by autocrine TGF-beta1 is a cell cycle-independent effect and influences their hematopoietic potential. Blood. 2000, 95:3001–9.PubMedGoogle Scholar
  91. 91.
    Miyamoto, H., Messing, E.M. and Chang, S. Androgen deprivation therapy for prostate cancer: current status and future prospects. The Prostate, 2004, 99:1–22.Google Scholar
  92. 92.
    Gomella LG, Zeltser I, Valicenti RK. Use of neoadjuvant and adjuvant therapy to prevent or delay recurrence of prostate cancer in patients undergoing surgical treatment for prostate cancer. Urology. 2003, 62:46–54.PubMedCrossRefGoogle Scholar
  93. 93.
    Teh BS, Ayala G, Aguilar L, Mai WY, Timme TL, Vlachaki MT, Miles B, Kadmon D, Wheeler T, Caillouet J, Davis M, Carpenter LS, Lu HH, Chiu JK, Woo SY, Thompson T, Aguilar-Cordova E, Butler EB. Phase I–II trial evaluating combined intensity-modulated radiotherapy and in situ gene therapy with or without hormonal therapy in treatment of prostate cancer-interim report on PSA response and biopsy data. Int J Radiat Oncol Biol Phys. 2004, 58:1520–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Mazhar D, Waxman J. Gene therapy for prostate cancer. BJU Int. 2004, 93:465–469.PubMedCrossRefGoogle Scholar
  95. 95.
    Garrison JB, Kyprianou N. Novel targeting of apoptosis pathways for prostate cancer therapy. Curr Cancer Drug Targets. 2004, 4:85–95.PubMedCrossRefGoogle Scholar
  96. 96.
    Canto El, Shariat SF, Slawin KM. Biochemical staging of prostate cancer. Urol Clin North Am. 2003, 30:263–77PubMedCrossRefGoogle Scholar
  97. 97.
    Wikstrom P, Damber J, Bergh A. Role of transforming growth factor-β1 in prostate cancer. Microsc Res Tech. 2001, 52:411–9PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Brian Zhu
    • 1
  • Natasha Kyprianou
    • 1
  1. 1.Division of Urology, Department of Surgery, Departments of Pathology and Cellular and Molecular BiochemistryUniversity of KentuckyLexington

Personalised recommendations