Advertisement

Chemokines and Cancer

  • Thomas T. Murooka
  • Sarah E. Ward
  • Eleanor N. Fish
Part of the Cancer Treatment and Research book series (CTAR, volume 126)

Keywords

Melanoma Cell Oral Squamous Cell Carcinoma CXCR4 Antagonist Chemokine Receptor Expression Murine Colon Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frederick, M.J. and G.L. Clayman, Chemokines in cancer. Expert Rev Mol Med, 2001. 2001: p. 1–18.PubMedCrossRefGoogle Scholar
  2. 2.
    Wong, M.M. and E.N. Fish, Chemokines: attractive mediators of the immune response. Semin Immunol, 2003. 15(1): p. 5–14.PubMedCrossRefGoogle Scholar
  3. 3.
    Bottazzi, B., et al., A chemoattractant expressed in human sarcoma cells (tumor-derived chemotactic factor, TDCF) is identical to monocyte chemoattractant protein-1/monocyte chemotactic and activating factor (MCP-1/MCAF). Int J Cancer, 1990. 45(4): p. 795–7.PubMedGoogle Scholar
  4. 4.
    Bottazzi, B., et al., Regulation of the macrophage content of neoplasms by chemoattractants. Science, 1983. 220(4593): p. 210–2.PubMedGoogle Scholar
  5. 5.
    Sica, A., et al., Defective expression of the monocyte chemotactic protein-1 receptor CCR2 in macrophages associated with human ovarian carcinoma. J Immunol, 2000. 164(2): p. 733–8.PubMedGoogle Scholar
  6. 6.
    Van Damme, J., et al., Structural and functional identification of two human, tumorderived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. J Exp Med, 1992. 176(1): p. 59–65.PubMedCrossRefGoogle Scholar
  7. 7.
    Amann, B., et al., Urinary levels of monocyte chemo-attractant protein-1 correlate with tumour stage and grade in patients with bladder cancer. Br J Urol, 1998. 82(1): p. 118–21.PubMedGoogle Scholar
  8. 8.
    Valkovic, T., et al., Expression of monocyte chemotactic protein-1 in human invasive ductal breast cancer. Pathol Res Pract, 1998. 194(5): p. 335–40.PubMedGoogle Scholar
  9. 9.
    Nesbit, M., et al., Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol, 2001. 166(11): p. 6483–90.PubMedGoogle Scholar
  10. 10.
    Azenshtein, E., et al., The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res, 2002. 62(4): p. 1093–102.PubMedGoogle Scholar
  11. 11.
    Luboshits, G., et al., Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res, 1999. 59(18): p. 4681–7.PubMedGoogle Scholar
  12. 12.
    Robinson, S.C., et al., A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res, 2003. 63(23): p. 8360–5.PubMedGoogle Scholar
  13. 13.
    Adler, E.P., et al., A dual role for tumor-derived chemokine RANTES (CCL5). Immunol Lett, 2003. 90(2–3): p. 187–94.PubMedCrossRefGoogle Scholar
  14. 14.
    Mantovani, A., et al., The origin and function of tumor-associated macrophages. Immunol Today, 1992. 13(7): p. 265–70.PubMedCrossRefGoogle Scholar
  15. 15.
    Chouaib, S., et al., The host-tumor immune conflict: from immunosuppression to resistance and destruction. Immunol Today, 1997. 18(10): p. 493–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Sica, A., et al., Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol, 2000. 164(2): p. 762–7.PubMedGoogle Scholar
  17. 17.
    Gu L, T.S., Homer RM, Tam C, Loda M, Rollins BJ., Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature, 2000. 404(6776): p. 407–11.PubMedCrossRefGoogle Scholar
  18. 18.
    Arvanitakis, L., et al., Human herpes virus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature, 1997. 385(6614): p. 347–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Bais, C., et al., G-protein-coupled receptor of Kaposi's sarcoma-associated herpes virus is a viral oncogene and angiogenesis activator. Nature, 1998. 391(6662): p. 86–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Yang, T.Y., et al., Transgenic expression of the chemokine receptor encoded by human herpes virus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. J Exp Med, 2000. 191(3): p. 445–54.PubMedCrossRefGoogle Scholar
  21. 21.
    Burger, M., et al., Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi's sarcoma herpes virus-G protein-coupled receptor. J Immunol, 1999. 163(4): p. 2017–22.PubMedGoogle Scholar
  22. 22.
    Nakano, K., et al., Kaposi's sarcoma-associated herpes virus (KSHV)-encoded vMIP-I and vMIP-II induce signal transduction and chemotaxis in monocytic cells. Arch Virol, 2003. 148(5): p. 871–90.PubMedCrossRefGoogle Scholar
  23. 23.
    Uccini, S., et al., In situ study of chemokine and chemokine-receptor expression in Kaposi sarcoma. Am J Dermatopathol, 2003. 25(5): p. 377–83.PubMedGoogle Scholar
  24. 24.
    Xie, K., Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev, 2001. 12(4): p. 375–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Luan, J., et al., Mechanism and biological significance of constitutive expression of MGSA/GRO chemokines in malignant melanoma tumor progression. J Leukoc Biol, 1997. 62(5): p. 588–97.PubMedGoogle Scholar
  26. 26.
    Schadendorf, D., et al., IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J Immunol, 1993. 151(5): p. 2667–75.PubMedGoogle Scholar
  27. 27.
    Moser, B., et al., Expression of transcripts for two interleukin 8 receptors in human phagocytes, lymphocytes and melanoma cells. Biochem J, 1993. 294 (Pt 1): p. 285–92.PubMedGoogle Scholar
  28. 28.
    Norgauer, J., B. Metzner, and I. Schraufstatter, Expression and growth-promoting function of the IL-8 receptor beta in human melanoma cells. J Immunol, 1996. 156(3): p. 1132–37.PubMedGoogle Scholar
  29. 29.
    Payne, A.S. and L.A. Cornelius, The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol, 2002. 118(6): p. 915–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Vamey, M.L., et al., Expression of CXCRI and CXCR2 receptors in malignant melanoma with different metastatic potential and their role in interleukin-8 (CXCL-8)-mediated modulation of metastatic phenotype. Clin Exp Metastasis, 2003. 20(8): p. 723–31.CrossRefGoogle Scholar
  31. 31.
    Ramjeesingh, R., R. Leung, and C.H. Siu, Interleukin-8 secreted by endothelial cells induces chemotaxis of melanoma cells through the chemokine receptor CXCR1. Faseb J, 2003. 17(10): p. 1292–4.PubMedGoogle Scholar
  32. 32.
    Takamori, H., et al., Autocrine growth effect of IL-8 and GROalpha on a human pancreatic cancer cell line, Capan-1. Pancreas, 2000. 21(1): p. 52–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Shi, Q., et al., Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res, 1999. 5(11): p. 3711–21.PubMedGoogle Scholar
  34. 34.
    Le, X., et al., Molecular regulation of constitutive expression of interleukin-8 in human pancreatic adenocarcinoma. J Interferon Cytokine Res, 2000. 20(11): p. 935–46.PubMedCrossRefGoogle Scholar
  35. 35.
    Kuwada, Y., et al., Potential involvement of IL-8 and its receptors in the invasiveness of pancreatic cancer cells. Int J Oncol, 2003. 22(4): p. 765–71.PubMedGoogle Scholar
  36. 36.
    Kleeff, J., et al., Detection and localization of Mip-3alpha/LARC/Exodus, a macrophage proinflammatory chemokine, and its CCR6 receptor in human pancreatic cancer. Int J Cancer, 1999. 81(4): p. 650–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Scotton, C.J., et al., Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res, 2002. 62(20): p. 5930–8.PubMedGoogle Scholar
  38. 38.
    Moore, B.B., et al., Distinct CXC chemokines mediate tumorigenicity of prostate cancer cells. Am J Pathol, 1999. 154(5): p. 1503–12.PubMedGoogle Scholar
  39. 39.
    Eck, M., et al., Pleiotropic effects of CXC chemokines in gastric carcinoma: differences in CXCL8 and CXCLI expression between diffuse and intestinal types of gastric carcinoma. Clin Exp Immunol, 2003. 134(3): p. 508–15.PubMedCrossRefGoogle Scholar
  40. 40.
    Sehgal, A., et al., Molecular characterization of CXCR-4: a potential brain tumor-associated gene. J Surg Oncol, 1998. 69(4): p. 239–48.PubMedCrossRefGoogle Scholar
  41. 41.
    Sehgal, A., et al., CXCR-4, a chemokine receptor, is overexpressed in and required for proliferation ofglioblastoma tumor cells. J Surg Oncol, 1998. 69(2): p. 99–104.PubMedCrossRefGoogle Scholar
  42. 42.
    Chan, C.C., et al., Expression of chemokine receptors, CXCR4 and CXCR5, and chemokines, BLC and SDF-1, in the eyes of patients with primary intraocular lymphoma. Ophthalmology, 2003. 110(2): p. 421–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Floridi, F., et al., Signaling pathways involved in the chemotactic activity of CXCL12 in cultured rat cerebellar neurons and CHPIO neuroepithelioma cells. J Neuroimmunol, 2003. 135(1–2): p. 38–46.PubMedCrossRefGoogle Scholar
  44. 44.
    Moller, C., et al., Expression and function of chemokine receptors in human multiple myeloma. Leukemia, 2003. 17(1): p. 203–10.PubMedCrossRefGoogle Scholar
  45. 45.
    Sun, Y.X., et al., Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem, 2003. 89(3): p. 462–73.PubMedCrossRefGoogle Scholar
  46. 46.
    Uchida, D., et al., Possible role of stromal-cell-derived factor-1/CXCR4 signaling on lymph node metastasis of oral squamous cell carcinoma. Exp Cell Res, 2003. 290(2): p. 289–302.PubMedCrossRefGoogle Scholar
  47. 47.
    Zeelenberg, I.S., L. Ruuls-Van Stalle, and E. Roos, The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res, 2003. 63(13): p. 3833–9.PubMedGoogle Scholar
  48. 48.
    Koshiba, T., et al., Expression ofstromal cell-derived factor I and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res, 2000. 6(9): p. 3530–5.PubMedGoogle Scholar
  49. 49.
    Barbero, S., et al., Stromal cell-derived factor alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res, 2003. 63(8): p. 1969–74.PubMedGoogle Scholar
  50. 50.
    Muller, A., et al., Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001. 410(6824): p. 50–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Barretina, J., et al., CXCR4 and SDF-1 expression in B-cell chronic lymphocytic leukemia and stage of the disease. Ann Hematol, 2003. 82(8): p. 500–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Cardones, A.R., T. Murakami, and S.T. Hwang, CXCR4 enhances adhesion of B16 tumor cells to endothelial cells in vitro and in vivo via beta(1) integrin. Cancer Res, 2003. 63(20): p. 6751–7.PubMedGoogle Scholar
  53. 53.
    Koch, A.E., et al., Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science, 1992. 258(5089): p. 1798–801.PubMedGoogle Scholar
  54. 54.
    Strieter, R.M., et al., Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol, 1992. 141(6): p. 1279–84.PubMedGoogle Scholar
  55. 55.
    Strieter, R.M., et al., The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem, 1995. 270(45): p. 27348–57.PubMedCrossRefGoogle Scholar
  56. 56.
    Sgadari, C., et al., Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo. Proc Natl Acad Sci U S A, 1996. 93(24): p. 13791–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Belperio, J.A., et al., CXC chemokines in angiogenesis. J Leukoc Biol, 2000. 68(1): p. 1–8.PubMedGoogle Scholar
  58. 58.
    Angiolillo, A.L., et al., Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med, 1995. 182(1): p. 155–62.PubMedCrossRefGoogle Scholar
  59. 59.
    Gupta, S.K., et al., Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. J Biol Chem, 1998. 273(7): p. 4282–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Salcedo, R., et al., Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol, 1999. 154(4): p. 1125–35.PubMedGoogle Scholar
  61. 61.
    Salcedo, R., et al., Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood, 2000. 96(1): p. 34–40.PubMedGoogle Scholar
  62. 62.
    Addison, C.L., et al., The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol, 2000. 165(9): p. 5269–77.PubMedGoogle Scholar
  63. 63.
    Romagnani, P., et al., Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest, 2001. 107(1): p. 53–63.PubMedGoogle Scholar
  64. 64.
    Bernardini, G., et al., Analysis of the role of chemokines in angiogenesis. J Immunol Methods, 2003. 273(1–2): p. 83–101.PubMedCrossRefGoogle Scholar
  65. 65.
    Arenberg, D.A., et al., Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J Clin Invest, 1996. 97(12): p. 2792–802.PubMedGoogle Scholar
  66. 66.
    Smith, D.R., et al., Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma. J Exp Med, 1994. 179(5): p. 1409–15.PubMedCrossRefGoogle Scholar
  67. 67.
    Yoneda, J., et al., Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst, 1998. 90(6): p. 447–54.PubMedCrossRefGoogle Scholar
  68. 68.
    Lane, B.R., et al., Interleukin-8 and growth-regulated oncogene alpha mediate angiogenesis in Kaposi's sarcoma. J Virol, 2002. 76(22): p. 11570–83.PubMedCrossRefGoogle Scholar
  69. 69.
    Arenberg, D.A., et al., The role of CXC chemokines in the regulation of angiogenesis in non-small cell lung cancer. J Leukoc Biol, 1997. 62(5): p. 554–62.PubMedGoogle Scholar
  70. 70.
    Arenberg, D.A., et al., Improved survival in tumor-bearing SCID mice treated with interferon-gamma-inducible protein 10 (IP-10/CXCL 10). Cancer Immunol Immunother, 2001. 50(10): p. 533–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Sgadari, C., A.L. Angiolillo, and G. Tosato, Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood, 1996. 87(9): p. 3877–82.PubMedGoogle Scholar
  72. 72.
    Luca, M., et al., Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol, 1997. 151(4): p. 1105–13.PubMedGoogle Scholar
  73. 73.
    Inoue, K., et al., Frequent administration of angiogenesis inhibitor TNP-470 (AGM-1470) at an optimal biological dose inhibits tumor growth and metastasis of metastatic human transitional cell carcinoma in the urinary bladder. Clin Cancer Res, 2002. 8(7): p. 2389–98.PubMedGoogle Scholar
  74. 74.
    Bar-Eli, M., Role of interleukin-8 in tumor growth and metastasis of human melanoma. Pathobiology, 1999. 67(1): p. 12–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Reiland, J., L.T. Furcht, and J.B. McCarthy, CXC-chemokines stimulate invasion and chemotaxis in prostate carcinoma cells through the CXCR2 receptor. Prostate, 1999. 41(2): p. 78–88.PubMedCrossRefGoogle Scholar
  76. 76.
    Till, K.J., et al., The chemokine receptor CCR7 and alpha4 integrin are important for migration of chronic lymphocytic leukemia cells into lymph nodes. Blood, 2002. 99(8): p. 2977–84.PubMedCrossRefGoogle Scholar
  77. 77.
    Scotton, C.J., et al., Epithelial cancer cell migration: a role for chemokine receptors? Cancer Res, 2001. 61(13): p. 4961–5.PubMedGoogle Scholar
  78. 78.
    Youngs, S.J., et al., Chemokines induce migrational responses in human breast carcinoma cell lines. Int J Cancer, 1997. 71(2): p. 257–66.PubMedCrossRefGoogle Scholar
  79. 79.
    Burger, M., et al., Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene, 2003. 22(50): p. 8093–101.PubMedCrossRefGoogle Scholar
  80. 80.
    Oonakahara, K.I., et al., SDF-1{alpha}/CXCL12-CXCR 4 axis is involved in the dissemination of NSCLC cells into pleural space. Am J Respir Cell Mol Biol, 2003.Google Scholar
  81. 81.
    Fernandis, A.Z., et al., Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene, 2004. 23(1): p. 157–67.PubMedCrossRefGoogle Scholar
  82. 82.
    Helbig, G., et al., NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem, 2003. 278(24): p. 21631–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Kato, M., et al., Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res, 2003. 5(5): p. R144–50.PubMedCrossRefGoogle Scholar
  84. 84.
    Staller, P., et al., Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumor suppressor pVHL. Nature, 2003. 425(6955): p. 307–11.PubMedCrossRefGoogle Scholar
  85. 85.
    Ding, Y., et al., Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin Cancer Res, 2003. 9(9): p. 3406–12.PubMedGoogle Scholar
  86. 86.
    Dellacasagrande, J., et al., Liver metastasis of cancer facilitated by chemokine receptor CCR6. Scand J Immunol, 2003. 57(6): p. 534–44.PubMedCrossRefGoogle Scholar
  87. 87.
    Yao, L., et al., Selective expression of stromal-derived factor-1 in the capillary vascular endothelium plays a role in Kaposi sarcoma pathogenesis. Blood, 2003. 102(12): p. 3900–5.PubMedCrossRefGoogle Scholar
  88. 88.
    De Clercq, E., The bicyclam AMD3100 story. Nat Rev Drug Discov, 2003. 2(7): p. 581–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Rubin, J.B., et al., A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci U S A, 2003. 100(23): p. 13513–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Tamamura, H., et al., T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett, 2003. 550(1–3): p. 79–83.PubMedCrossRefGoogle Scholar
  91. 91.
    Chen, Y., G. Stamatoyannopoulos, and C.Z. Song, Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res, 2003. 63(16): p. 4801–4.PubMedGoogle Scholar
  92. 92.
    Filleur, S., et al., SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res, 2003. 63(14): p. 3919–22.PubMedGoogle Scholar
  93. 93.
    Wiley, H.E., et al., Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst, 2001. 93(21): p. 1638–43.PubMedCrossRefGoogle Scholar
  94. 94.
    Bertolini, F., et al., CXCR4 neutralization, a novel therapeutic approach for non-Hodgkin's lymphoma. Cancer Res, 2002. 62(11): p. 3106–12.PubMedGoogle Scholar
  95. 95.
    Robinson, S.C., K.A. Scott, and F.R. Balkwill, Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-alpha. Eur J Immunol, 2002. 32(2): p. 404–12.PubMedCrossRefGoogle Scholar
  96. 96.
    Bottazzi, B., et al., Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth, and susceptibility to IL-2 therapy of a murine melanoma. J Immunol, 1992. 148(4): p. 1280–5.PubMedGoogle Scholar
  97. 97.
    Monti, P., et al., The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res, 2003. 63(21): p. 7451–61.PubMedGoogle Scholar
  98. 98.
    Braun, S.E., et al., The CC chemokine CK beta-11/MIP-3 beta/ELC/Exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells. J Immunol, 2000. 164(8): p. 4025–31.PubMedGoogle Scholar
  99. 99.
    Fushimi, T., et al., Macrophage inflammatory protein 3alpha transgene attracts dendritic cells to established murine tumors and suppresses tumor growth. J Clin Invest, 2000. 105(10): p. 1383–93.PubMedCrossRefGoogle Scholar
  100. 100.
    Hillinger, S., et al., EBV-induced molecule 1 ligand chemokine (ELC/CCL19) promotes IFN-gamma-dependent antitumor responses in a lung cancer model. J Immunol, 2003. 171(12): p. 6457–65.PubMedGoogle Scholar
  101. 101.
    Lee, J.M., et al., Intratumoral expression of macrophage-derived chemokine induces CD4+ T cell-independent antitumor immunity in mice. J Immunother, 2003. 26(2): p. 117–29.PubMedCrossRefGoogle Scholar
  102. 102.
    Guo, J., et al., Fractalkine transgene induces T-cell-dependent antitumor immunity through chemoattraction and activation of dendritic cells. Int J Cancer, 2003. 103(2): p. 212–20.PubMedCrossRefGoogle Scholar
  103. 103.
    Lavergne, E., et al., Fractalkine mediates natural killer-dependent antitumor responses in vivo. Cancer Res, 2003. 63(21): p. 7468–74.PubMedGoogle Scholar
  104. 104.
    Ruehlmann, J.M.p., et al., MIG (CXCL9) chemokine gene therapy combines with antibody-cytokine fusion\par protein to suppress growth and dissemination of murine colon carcinoma.\par. Cancer Res\par, 2001. 61\par(23\par): p. 8498–503\par.Google Scholar
  105. 105.
    Regulier, E., et al., Adenovirus-mediated delivery of antiangiogenic genes as an antitumor approach. Cancer Gene Ther, 2001. 8(1): p. 45–54.PubMedCrossRefGoogle Scholar
  106. 106.
    Giussani, C., et al., Local intracerebral delivery of endogenous inhibitors by osmotic minipumps effectively suppresses glioma growth in vivo. Cancer Res, 2003. 63(10): p. 2499–505.PubMedGoogle Scholar
  107. 107.
    Oliver, V.K., et al., Regulation of the pro-angiogenic microenvironment by carboxyamido-triazole. J Cell Physiol, 2003. 197(1): p. 139–48.PubMedCrossRefGoogle Scholar
  108. 108.
    Fujisawa, N., et al., alpha-Chemokine growth factors for adenocarcinomas; a synthetic peptide inhibitor for alpha-chemokines inhibits the growth of adenocarcinoma cell lines. J Cancer Res Clin Oncol, 2000. 126(1): p. 19–26.PubMedCrossRefGoogle Scholar
  109. 109.
    Biragyn, A., et al., Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat Biotechnol, 1999. 17(3): p. 253–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Rousseau, R.F., et al., Local and systemic effects of an allogeneic tumor cell vaccine combining transgenic human lymphotactin with interleukin-2 in patients with advanced or refractory neuroblastoma. Blood, 2003. 101(5): p. 1718–26.PubMedCrossRefGoogle Scholar
  111. 111.
    Terando, A., B. Roessler, and J.J. Mule, Chemokine gene modification of human dendritic cell-based tumor vaccines using a recombinant adenoviral vector. Cancer Gene Ther, 2004.Google Scholar
  112. 112.
    Matsuyoshi, H., et al., Enhanced priming of antigen-specific CTLs in vivo by embryonic stem cell-derived dendritic cells expressing chemokine along with antigenic protein: application to antitumor vaccination. J Immunol, 2004. 172(2): p. 776–86.PubMedGoogle Scholar
  113. 113.
    Ng-Cashin, J., et al., Host absence of CCR5 potentiates dendritic cell vaccination. J Immunol, 2003. 170(8): p. 4201–8.PubMedGoogle Scholar
  114. 114.
    Hu, J.Y., et al., Transfection of colorectal cancer cells with chemokine MCP-3 (monocyte chemotactic protein-3) gene retards tumor growth and inhibits tumor metastasis. World J Gastroenterol, 2002. 8(6): p. 1067–72.PubMedGoogle Scholar
  115. 115.
    Ladell, K., et al., A combination of plasmid DNAs encoding murine fetal liver kinase 1 extracellular domain, murine interleukin-12, and murine interferon-gamma inducible protein-10 leads to tumor regression and survival in melanoma-bearing mice. J Mol Med, 2003. 81(4): p. 271–8.PubMedGoogle Scholar
  116. 116.
    Gao, J.Q., et al., Antitumor effect by interleukin-11 receptor alpha-locus chemokine/CCL27, introduced into tumor cells through a recombinant adenovirus vector. Cancer Res, 2003. 63(15): p. 4420–5.PubMedGoogle Scholar
  117. 117.
    Tsuchiyama, T., et al., Enhanced antitumor effects of a bicistronic adenovirus vector expressing both herpes simplex virus thymidine kinase and monocyte chemoattractant protein-1 against hepatocellular carcinoma. Cancer Gene Ther, 2003. 10(8): p. 647.CrossRefGoogle Scholar
  118. 118.
    Ueno, T., et al., Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res, 2000. 6(8): p. 3282–9.PubMedGoogle Scholar
  119. 119.
    Schteingart, D.E., et al., Overexpression of CXC chemokines by an adrenocortical carcinoma: a novel clinical syndrome. J Clin Endocrinol Metab, 2001. 86(8): p. 3968–74.PubMedCrossRefGoogle Scholar
  120. 120.
    Kershaw, M.H., et al., Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther, 2002. 13(16): p. 1971–80.PubMedCrossRefGoogle Scholar
  121. 121.
    Saijo, Y., et al., Proinflammatory cytokine IL-1 beta promotes tumor growth of Lewis lung carcinoma by induction of angiogenic factors: in vivo analysis of tumor-stromal interaction. J Immunol, 2002. 169(1): p. 469–75.PubMedGoogle Scholar
  122. 122.
    Moore, B.B., et al., CXC chemokines mechanism of action in regulating tumor angiogenesis. Angiogenesis, 1998. 2(2): p. 123–34.PubMedGoogle Scholar
  123. 123.
    Lasagni, L., et al., An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med, 2003. 197(11): p. 1537–49.PubMedCrossRefGoogle Scholar
  124. 124.
    Li, Y., et al., Suppression of tumor growth by viral vector-mediated gene transfer of N-terminal truncated platelet factor 4. Cancer Biother Radiopharm, 2003. 18(5): p. 829–40.PubMedCrossRefGoogle Scholar
  125. 125.
    Van Coillie, E., et al., Tumor angiogenesis induced by granulocyte chemotactic protein-2 as a countercurrent principle. Am J Pathol, 2001. 159(4): p. 1405–14.PubMedGoogle Scholar
  126. 126.
    Lorena, S.C., et al., Eotaxin expression in oral squamous cell carcinomas with and without tumor associated tissue eosinophilia. Oral Dis, 2003. 9(6): p. 279–83.PubMedCrossRefGoogle Scholar
  127. 127.
    Nakayama, T., et al., Cutting edge: profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues. J Immunol, 2003. 170(3): p. 1136–40.PubMedGoogle Scholar
  128. 128.
    Mickanin, C.S., U. Bhatia, and M. Labow, Identification of a novel beta-chemokine, MEC, down-regulated in primary breast tumors. Int J Oncol, 2001. 18(5): p. 939–44.PubMedGoogle Scholar
  129. 129.
    Chada, S., R. Ramesh, and A.M. Mhashilkar, Cytokine-and chemokine-based gene therapy for cancer. Curr Opin Mol Ther, 2003. 5(5): p. 463–74.PubMedGoogle Scholar
  130. 130.
    Nomura, T., et al., Enhancement of anti-tumor immunity by tumor cells transfected with the secondary lymphoid tissue chemokine EBI-1-ligand chemokine and stromal cell-derived factor-1 alpha chemokine genes. Int J Cancer, 2001. 91(5): p. 597–606.PubMedCrossRefGoogle Scholar
  131. 131.
    Husson, H., et al., CXCL13 (BCA-1) is produced by follicular lymphoma cells: role in the accumulation of malignant B cells. Br J Haematol, 2002. 119(2): p. 492–5.PubMedCrossRefGoogle Scholar
  132. 132.
    Smith, J.R., et al., Expression of B-cell-attracting chemokine 1 (CXCL13) by malignant lymphocytes and vascular endothelium in primary central nervous system lymphoma. Blood, 2003. 101(3): p. 815–21.PubMedCrossRefGoogle Scholar
  133. 133.
    Ghia, P., et al., Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur J Immunol, 2002. 32(5): p. 1403–13.PubMedCrossRefGoogle Scholar
  134. 134.
    Frederick, M.J., et al., In vivo expression of the novel CXC chemokine BRAK in normal and cancerous human tissue. Am J Pathol, 2000. 156(6): p. 1937–50.PubMedGoogle Scholar
  135. 135.
    Hromas, R., et al., Cloning of BRAK, a novel divergent CXC chemokine preferentially expressed in normal versus malignant cells. Biochem Biophys Res Commun, 1999. 255(3): p. 703–6.PubMedCrossRefGoogle Scholar
  136. 136.
    Spinetti, G., et al., The chemokine receptor CCR8 mediates rescue from dexamethasone-induced apoptosis via an ERK-dependent pathway. J Leukoc Biol, 2003. 73(1): p. 201–7.PubMedCrossRefGoogle Scholar
  137. 137.
    Lentzsch, S., et al., Macrophage inflammatory protein 1-alpha (MIP-1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood, 2003. 101(9): p. 3568–73.PubMedCrossRefGoogle Scholar
  138. 138.
    Mellado, M., et al., A potential immune escape mechanism by melanoma cells through the activation of chemokine-induced T cell death. Curr Biol, 2001. 11(9): p. 691–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Crittenden, M., et al., Expression of inflammatory chemokines combined with local tumor destruction enhances tumor regression and long-term immunity. Cancer Res, 2003. 63(17): p. 5505–12.PubMedGoogle Scholar
  140. 140.
    Nicholas, J., et al., Kaposi's sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nat Med, 1997. 3(3): p. 287–92.PubMedCrossRefGoogle Scholar
  141. 141.
    Yi, F., R. Jaffe, and E.V. Prochownik, The CCL6 chemokine is differentially regulated by c-Myc and L-Myc, and promotes tumorigenesis and metastasis. Cancer Res, 2003. 63(11): p. 2923–32.PubMedGoogle Scholar
  142. 142.
    Vande Broek, I., et al., Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1,-2 and-3. Br J Cancer, 2003. 88(6): p. 855–62.PubMedCrossRefGoogle Scholar
  143. 143.
    Kleinhans, M., et al., Functional expression of the eotaxin receptor CCR3 in CD30+ cutaneous T-cell lymphoma. Blood, 2003. 101(4): p. 1487–93.PubMedCrossRefGoogle Scholar
  144. 144.
    Salcedo, R., et al., Eotaxin (CCL11) induces in vivo angiogenic responses by human CCR3+ endothelial cells. J Immunol, 2001. 166(12): p. 7571–8.PubMedGoogle Scholar
  145. 145.
    Maggio, E.M., et al., Common and differential chemokine expression patterns in rs cells of NLP, EBV positive and negative classical Hodgkin lymphomas. Int J Cancer, 2002. 99(5): p. 665–72.PubMedCrossRefGoogle Scholar
  146. 146.
    Han, I.S., et al., Differentiation of CD34+ cells from human cord blood and murine bone marrow is suppressed by C6 beta-chemokines. Mol Cells, 2003. 15(2): p. 176–80.PubMedGoogle Scholar
  147. 147.
    Strasly, M., et al., CCL16 activates an angiogenic program in vascular endothelial cells. Blood, 2004. 103(1): p. 40–9PubMedCrossRefGoogle Scholar
  148. 148.
    Ferenczi, K., et al., Increased CCR4 expression in cutaneous T cell lymphoma. J Invest Dermatol, 2002. 119(6): p. 1405–10.PubMedCrossRefGoogle Scholar
  149. 149.
    Schutyser, E., et al., Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma. J Biol Chem, 2002. 277(27): p. 24584–93.PubMedCrossRefGoogle Scholar
  150. 150.
    Struyf, S., et al., PARC/CCL18 is a plasma CC chemokine with increased levels in childhood acute lymphoblastic leukemia. Am J Pathol, 2003. 163(5): p. 2065–75.PubMedGoogle Scholar
  151. 151.
    Murakami, T., et al., Immune evasion by murine melanoma mediated through CC chemokine receptor-10. J Exp Med, 2003. 198(9): p. 1337–47PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Thomas T. Murooka
    • 1
    • 2
  • Sarah E. Ward
    • 1
    • 2
  • Eleanor N. Fish
    • 1
    • 2
  1. 1.Department of ImmunologyUniversity of TorontoToronto
  2. 2.Toronto General Research InstituteUniversity of Health NetworkToronto

Personalised recommendations