Advertisement

The Innate Functions of Dendritic Cells in Peripheral Lymphoid Tissues

  • Ralph M. Steinman
  • Laura Bonifaz
  • Shin-ichiro Fujii
  • Kang Liu
  • David Bonnyay
  • Sayuri Yamazaki
  • Maggi Pack
  • Daniel Hawiger
  • Tomonori Iyoda
  • Kayo Inaba
  • Michel C. Nussenzweig
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 560)

Abstract

The term “innate” has several functional connotations for dendritic cell (DC) biology (Table 1). DCs can mediate innate immunity directly; they also link innate and adaptive arms of the immune system during immune responses and in maintaining tolerance.

Keywords

Dendritic Cell Major Histocompatibility Complex Class Lymphoid Tissue Drain Lymph Node Dendritic Cell Maturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. 1.
    A. L. Neild, and C. R. Roy, Legionella reveal dendritic cell functions that facilitate selection of antigens for MHC class II presentation, Immunity. 18, 813–823 (2003).PubMedCrossRefGoogle Scholar
  2. 2.
    F. P. Siegal, N. Kadowaki, M. Shodell, P. A. Fitzgerald-Bocarsly, K. Shah, S. Ho, S. Antonenko, and Y. J. Liu, The nature of the principal type 1 interferon-producing cells in human blood, Science, 284, 1835–1837 (1999).PubMedCrossRefGoogle Scholar
  3. 3.
    C. B. Lopez, A. Garcia-Sastre, B. R. G. Williams, and T. M. Moran, Type 1 interferon induction pathway, but not released interferon, participates in the maturation of dendritic cells induced by negative-strand RNA viruses, J. Infect. Dis. 187, 1126–1136 (2003).PubMedCrossRefGoogle Scholar
  4. 4.
    N. Kadowaki, S. Antonenko, and Y. J. Liu, Distinct CpG DNA and polyinosinic-polycytidylic acid double-stranded RNA, respectively, stimulate CD11c-type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN, J. Immunol. 166, 2291–2295 (2001).PubMedGoogle Scholar
  5. 5.
    L. Alexopoulou, A. C. Holt, R. Medzhitov, and R. A. Flavell, Recognition of double-stranded RNA and activation of NF-kB by Toll-like receptor 3, Nature. 413, 732–738 (2001).PubMedCrossRefGoogle Scholar
  6. 6.
    S. S. Diebold, M. Montoya, H. Unger, L. Alexopoulou, P. Roy, L. E. Haswell, A. Al-Shamkhani, R. Flavell, P. Borrow, and C. Reis e Sousa, Viral infection switches non-plasmacytoid dendritic cells into high interferon producers, Nature. 424, 324–328 (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Fujii, K. Shimizu, C. Smith, L. Bonifaz, and R. M. Steinman, Activation of natural killer T cells by a-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a co-administered protein, J. Exp. Med. 198, 267–279 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    N. C. Fernandez, A. Lozier, C. Flament, P. Rieciardi-Castagnoli, D. Bellet, M. Suter, M. Perricaudet, T. Tursz, E. Maraskovsky, and L. Zitvogel, Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo, Nat. Med. 5, 405–411 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    M. L. Kapsenberg, Dendritic-cell control of pathogen-driven T-cell polarization, Nat. Rev. Immunol. 3, 984–993 (2003).PubMedCrossRefGoogle Scholar
  10. 10.
    B. Pulendran, K. Palucka, and J. Banchereau, Sensing pathogens and tuning immune responses, Science. 293, 253–256 (2001).PubMedCrossRefGoogle Scholar
  11. 11.
    D. Hawiger, K. Inaba, Y. Dorsett, K. Guo, K. Mahnke, M. Rivera, J. V. Ravetch, R. M. Steinman, and M. C. Nussenzweig, Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo, J. Exp. Med. 194, 769–780 (2001).PubMedCrossRefGoogle Scholar
  12. 12.
    L. Bonifaz, D. Bonnyay, K. Mahnke, M. Rivera, M. C. Nussenzweig, and R. M. Steinman, Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class 1 products and peripheral CD8+ T cell tolerance, J. Exp. Med. 196, 1627–1638 (2002).PubMedCrossRefGoogle Scholar
  13. 13.
    D. Hawiger, R. F. Masilamani, E. Bettelli, V. K. Kuchroo, and M. C. Nussenzweig, Dynamic regulation of T cell tolerance induced by dendritic cells in vivo, Submitted. (2004).Google Scholar
  14. 14.
    O. Akbari, R. H. DeKruyff, and D. T. Umetsn, Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen, Nat. Immunol. 2, 725–731 (2001).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Wakkach, N. Fournier, V. Brun, J. P. Brcittmayer, F. Cottrez, and H. Groux, Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo, Immunity. 18, 605–617 (2003).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Yamazaki, T. Iyoda, K. Tarbell, K. Olson, K. Velinzon, K. Inaba, and R. M. Steinman, Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen processing dendritic cells, J. Exp. Med. 198, 235–247 (2003).PubMedCrossRefGoogle Scholar
  17. 17.
    M. D. Witmer, and R. M. Steinman, The anatomy of peripheral lymphoid organs with emphasis on accessory cells: light microscopic, immunocytochemical studies of mouse spleen, lymph node and Peyer’s patch., Am. J. Anat. 170, 465–481 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    G. Kraal, M. Breel, M. Janse, and G. Bruin, Langerhans cells, veiled cells, and interdigitating cells in the mouse recognized by a monoclonal antibody, J. Exp. Med. 163, 981–997 (1986).PubMedCrossRefGoogle Scholar
  19. 19.
    E. Ingulli, A. Mondino, A. Khoruts, and M. K. Jenkins, In vivo detection of dendritic cell antigen presentation to CD4+ T cells, J. Exp. Med. 185, 2133–2141 (1997).PubMedCrossRefGoogle Scholar
  20. 20.
    P. Bousso, and E. Robey, Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes, Nat. Immunol. 4, 579–585 (2003).PubMedCrossRefGoogle Scholar
  21. 21.
    T. R. Mempel, S. E. Henrickson, and U. H. Von Andrian, T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases, Nature. 427, 154–159 (2004).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Brocker, Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells, J. Exp. Med. 186, 1223–1232 (1997).PubMedCrossRefGoogle Scholar
  23. 23.
    M. O’Keeffe, H. Hochrein, D. Vremec, I. Caminschi, J. L. Miller, E. M. Anders, L. Wu, M. H. Lahoud, S. Henri, B. Scott, P. Hertzog, L. Tatarczuch, and K. Shortman, Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8+ dendritic cells only after microbial stimulus, J. Exp. Med. 196, 1307–1319 (2002).PubMedCrossRefGoogle Scholar
  24. 24.
    S. Henri, D. Vremec, A. Kamath, J. Waithman, S. Williams, C. Benoist, K. Burnham, S. Saeland, E. Handman, and K. Shortman, The dendritic cell populations of mouse lymph nodes, J. Immunol. 167, 741–748 (2001).PubMedGoogle Scholar
  25. 25.
    C. Robert, R. C. Fuhlbrigge, J. D. Kieffer, S. Ayehunie, R. O. Hynes, G. Cheng, S. Grabbe, U. H. von Andrian, and T. S. Kupper, Interaction of dendritic cells with skin endothelium: a new perspective on immunosurveillance, J. Exp. Med. 189, 627–636 (1999).PubMedCrossRefGoogle Scholar
  26. 26.
    F. Geissmann, S. Jung, and D. R. Littman, Blood monocytes consist of two principal subsets with distinct migratory properties, Immunity. 19, 71–82 (2003).PubMedCrossRefGoogle Scholar
  27. 27.
    G. J. Randolph, G. Sanchez-Schmitz, R. M. Liebman, and K. Schakel, The CD16+ (FcgRIII+) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting, J. Exp. Med. 196, 517–527 (2002).PubMedCrossRefGoogle Scholar
  28. 28.
    G. Rotta, E. W. Edwards, S. Sangaletti, C. Bennett, S. Ronzoni, M. P. Colombo, R. M. Steinman, G. J. Randolph, and M. Rescigno, Lipopolysaccharide or whole bacteria block the conversion of inflammatory monocytes into dendritic cells in vivo, J. Exp. Med. 198, 1253–1263 (2003).PubMedCrossRefGoogle Scholar
  29. 29.
    G. Schuler, and R. M. Steinman, Murinc epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro, J. Exp. Med. 161, 526–546 (1985).PubMedCrossRefGoogle Scholar
  30. 30.
    N. Romani, S. Koide, M. Crowley, M. Witmer-Pack, A. M. Livingstone, C. G. Fathman, K. Inaba, and R. M. Steinman, Presentation of exogenous protein antigens by dendritic cells to T cell clones: intact protein is presented best by immature, epidermal Langerhans cells, J. Exp. Med. 169, 1169–1178 (1989).PubMedCrossRefGoogle Scholar
  31. 31.
    K. Inaba, G. Schuler, M. D. Witmer, J. Valinsky, B. Atassi, and R. M. Steinman, The immunologic properties of purified Langerhans cells: distinct requirements for the stimulation of unprimed and sensitized T lymphocytes, J. Exp. Med. 164, 605–613 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    K. Inaba, N. Romani, and R. M. Steinman, An antigen-independent contact mechanism as an early step in T-cell-proliferative responses to dendritic cells, J. Exp. Med. 170, 527–542 (1989).PubMedCrossRefGoogle Scholar
  33. 33.
    C. P. Larsen, R. M. Steinman, M. Witmer-Pack, D. F. Hankins, P. J. Morris, and J. M. Austyn, Migration and maturation of Langerhans cells in skin transplants and explants, J. Exp. Med. 172, 1483–1493 (1990).PubMedCrossRefGoogle Scholar
  34. 34.
    M. Pope, M. G. H. Betjes, N. Romani, H. Hirmand, P. U. Cameron, L. Hoffman, S. Gezelter, G. Schuler, and R. M. Steinman, Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1, Cell. 78, 389–398 (1994).PubMedCrossRefGoogle Scholar
  35. 35.
    E. Pure, K. Inaba, M. T. Crowley, L. Tardelli, M. D. Witmer-Pack, G. Ruberti, G. Fathman, and R. M. Steinman, Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of major histocompatibility complex class II molecules and expression of invariant chain, J. Exp. Med. 172, 1459–1469 (1990).PubMedCrossRefGoogle Scholar
  36. 36.
    K. Inaba, J. P. Metaly, M. T. Crowley, and R. M. Steinman, Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ, J. Exp. Med. 172, 631–640 (1990).PubMedCrossRefGoogle Scholar
  37. 37.
    K. Inaba, S. Turley, T. Iyoda, F. Yamaide, S. Shimoyama, C. Reis e Sousa, R. N. Germain, I. Mellman, and R. M. Steinman, The formation of immunogenic MHC class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli., J. Exp. Med. 191, 927–936 (2000).PubMedCrossRefGoogle Scholar
  38. 38.
    S. J. Turley, K. Inaba, W. S. Garrett, M. Ebersold, J. Untermaehrer, R. M. Steinman, and I. Mellman, Transport of peptide-MHC class II complexes in developing dendritic cells, Science. 288, 522–527 (2000).PubMedCrossRefGoogle Scholar
  39. 39.
    M. Cella, A. Engering, V. Pinet, J. Pieters, and A. Lanzavecchia, Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells, Nature. 388, 782–787 (1997).PubMedCrossRefGoogle Scholar
  40. 40.
    W. S. Garrett, L. M. Chen, R. Kroschewski, M. Ebersold, S. Turley, S. Trombetta, J. E. Galan, and I. Mellman, Developmental control of endocytosis in dendritic cells by Cdc42, Cell. 102, 325–334 (2000).PubMedCrossRefGoogle Scholar
  41. 41.
    P. Pierre, S. J. Turley, E. Gatti, M. Hull, J. Meltzer, A. Mirza, K. Inaba, R. M. Steinman, and I. Mellman, Developmental regulation of MHC class II transport in mouse dendritic cells, Nature. 388, 787–792 (1997).PubMedCrossRefGoogle Scholar
  42. 42.
    E. S. Trombetta, M. Ebersold, W. Garrett, M. Pypaert, and I. Mellman, Activation of lysosomal function during dendritic cell maturation, Science. 299, 1400–1403 (2003).PubMedCrossRefGoogle Scholar
  43. 43.
    K. Inaba, M. Pack, M. Inaba, H. Sakuta, F. Isdell, and R. M. Steinman, High levels of a major histocompatibility complex II — self peptide complex on dendritic cells from lymph node, J. Exp. Med. 186, 665–672 (1997).PubMedCrossRefGoogle Scholar
  44. 44.
    K. Liu, T. Iyoda, M. Saternus, K. Kimura, K. Inaba, and R. M. Steinman, Immune tolerance after delivery of dying cells to dendritic cells in situ., J. Exp. Med. 196, 1091–1097 (2002).PubMedCrossRefGoogle Scholar
  45. 45.
    M. K. Brimnes, L. Bonifaz, R. M. Steinman, and T. M. Moran, Influenza virus-induced dendritic cell maturation is associated with the induction of strong T cell immunity to a coadministered, normally nonimmunogenic protein, J. Exp. Med. 198, 133–144 (2003).PubMedCrossRefGoogle Scholar
  46. 46.
    L. C. Bonifaz, D. P. Bonnyay, A. Charalambous, D. I. Darguste, S. Fujii, H. Soares, M. K. Brimnes, B. Moltedo, T. M. Moran, and R. M. Steinman, In vivo targeting of antigens to the DEC-205 receptor on maturing dendritic cells improves T cell vaccination, J. Exp. Med. 199, 815–824 (2004).PubMedCrossRefGoogle Scholar
  47. 47.
    S. Fujii, K. Liu, C. Smith, A. J. Bonito, and R. M. Steinman, The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation., Submitted. (2004).Google Scholar
  48. 48.
    J. den Haan, S. Lehar, and M. Bevan, CD8+ but not CD8+ dendritic cells cross-prime cytotoxic T cells in vivo, J. Exp. Med. 192, 1685–1696 (2000).CrossRefGoogle Scholar
  49. 49.
    S. Jung, D. Unutmaz, P. Wong, G.-I. Sano, K. De los Santos, T. Sparwasser, S. Wu, S. Vuthoori, K. Ko, F. Zavala, E. G. Pamer, D. R. Littman, and R. A. Lang, In vivo depletion of CD11c+ dendritic cells abrogation priming of CD8+ T cells by exogenous cell-associated antigens., Immunity. 17, 211–220 (2002).PubMedCrossRefGoogle Scholar
  50. 50.
    W. R. Heath, and F. R. Carbone, Cross-presentation in viral immunity and self tolerance, Nat. Rev. Immunol. 1, 126–134 (2001).PubMedCrossRefGoogle Scholar
  51. 51.
    S. Amigorena, Fcg receptors and cross-presentation in dendritic cells, J. Exp. Med. 195, F1–3 (2002).PubMedCrossRefGoogle Scholar
  52. 52.
    A. Regnault, D. Lankar, V. Lacabanne, A. Rodriguez, C. Thery, M. Rescigno, T. Saito, S. Verbeek, C. Bonnerot, P. Ricciardi-Castagnoli, and S. Amigorena, Fcg receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization, J. Exp. Med. 189, 371–380 (1999).PubMedCrossRefGoogle Scholar
  53. 53.
    T. Iyoda, S. Shimoyama, K. Liu, Y. Omatsu, Y. Maeda, K. Takahara, Y. Akiyama, R. M. Steinman, and K. Inaba, The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo, J. Exp. Med. 195, 1289–1302 (2002).PubMedCrossRefGoogle Scholar
  54. 54.
    P. Guermonprez, L. Saveanu, M. Kleijmeer, J. Davoust, P. Van Endert, and S. Amigorena, ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells, Nature. 425, 397–402 (2003).PubMedCrossRefGoogle Scholar
  55. 55.
    M. Houde, S. Bertholet, E. Gagnon, S. Brunet, G. Goyette, A. Laplante, M. F. Princiotta, P. Thibault, D. Sacks, and M. Desjardins, Phagosomes are competent organelles for antigen cross-presentation, Nature. 425, 402–406 (2003).PubMedCrossRefGoogle Scholar
  56. 56.
    W. J. Swiggard, A. Mirza, M. C. Nussenzweig, and R. M. Steinman, DEC-205, a 205 kDa protein abundant on mouse dendritic cells and thymic epithelium that is detected by the monoclonal antibody NLDC-145: Purification, characterization and N-terminal amino acid sequence, Cell. Immunol. 165, 302–311 (1995).PubMedCrossRefGoogle Scholar
  57. 57.
    W. Jiang, W. J. Swiggard, C. Heufler, M. Peng, A. Mirza, R. M. Steinman, and M. C. Nussenzweig, The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing, Nature. 375, 151–155 (1995).PubMedCrossRefGoogle Scholar
  58. 58.
    K. Mahnke, M. Guo, S. Lee, H. Sepulveda, S. L. Swain, M. Nussenzweig, and R. M. Steinman, The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments, J. Cell Biol. 151, 673–683 (2000).PubMedCrossRefGoogle Scholar
  59. 59.
    S. A. Linehan, L. Martinez-Pomares, P. D. Stahl, and S. Gordon, Mannose receptor and its putative ligands in normal murine lymphoid and nonlymphoid organs: in situ expression of mannose receptor by selected macrophages, endothelial cells, perivascular microglia, and mesangial cells, but not dendritic cells, J. Exp. Med. 189, 1961–1972 (1999).PubMedCrossRefGoogle Scholar
  60. 60.
    M. Guo, S. Gong, S. Maric, Z. Misulovin, M. Pack, K. Mahnke, M. Nussenzweig, and R. M. Steinman, A monoclonal antibody to the DEC-205 endocytosis receptor on human dendritic cells, Hum. Immunol. 61, 729–738 (2000).PubMedCrossRefGoogle Scholar
  61. 61.
    M. W. Moore, F. R. Carbone, M. J. Bevan, Introduction of soluble protein into the class I pathway of antigen processing and presentation, Cell. 54, 777–785 (1988).PubMedCrossRefGoogle Scholar
  62. 62.
    C. W. Pugh, G. G. MacPherson, and H. W. Steer, Characterization of nonlymphoid cells derived from rat peripheral lymph, J. Exp. Med. 157, 1758–1779 (1983).PubMedCrossRefGoogle Scholar
  63. 63.
    F.-P. Huang, N. Platt, M. Wykes, J. R. Major, T. J. Powell, C. D. Jenkins, and G. G. MacPherson, A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric Iymph nodes, J. Exp. Med. 191, 435–442 (2000).PubMedCrossRefGoogle Scholar
  64. 64.
    C. Scheinecker, R. McHugh, E. M. Shevach, and R. N. Germain, Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node, J. Exp. Med. 196, 1079–1090 (2002).PubMedCrossRefGoogle Scholar
  65. 65.
    G. T. Belz, G. M. N. Behrens, C. M. Smith, J. F. A. P. Miller, C. Jones, K. Lejon, C. G. Fathman, S. N. Mueller, K. Shortman, F. R. Carbone, and W. R. Heath, The CD8a+ dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens, J. Exp. Med. 196, 1099–1104 (2002).PubMedCrossRefGoogle Scholar
  66. 66.
    S. Turley, L. Poirot, M. Haltori, C. Benoist, and D. Mathis, Physiological b cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model, J. Exp. Med. 198, 1527–1537 (2003).PubMedCrossRefGoogle Scholar
  67. 67.
    K. Y. Vermaelen, I. Carro-Muino, B. N. Lambrecht, and R. A. Pauwels, Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes, J. Exp. Med. 193, 51–60 (2001).PubMedCrossRefGoogle Scholar
  68. 68.
    J. Cui, T. Shin, T. Kawano, H. Sato, E. Kondo, I. Toura, Y. Kaneko, H. Koseki, M. Kanno, and M. Taniguchi, Requirement for Va 14 NKT cells in IL-12-mediated rejection of tumors, Science. 278, 1623–1626 (1997).PubMedCrossRefGoogle Scholar
  69. 69.
    T. Kawano, J. Cui, Y. Koezuka, I. Toura, Y. Kaneko, K. Motoki, H. Ueno, R. Nakagawa, H. Sato, E. Kondo, H. Koseki, and M. Taniguchi, CD1d-restricted and TCR-mediated activation of Va14 NKT cells by glycosylceramides, Science. 278, 1626–1629 (1997).PubMedCrossRefGoogle Scholar
  70. 70.
    G. Gonzalez-Aseguinolaza, L. Van Kaer, C. C. Bergmann, J. M. Wilson, J. Schmieg, M. Kronenberg, T. Nakayama, M. Taniguchi, Y. Koezuka, and M. Tsuji, Natural killer T cell ligand a-galactosylceramide enhances protective immunity induced by malaria vaccines, J. Exp. Med. 195, 617–624 (2002).PubMedCrossRefGoogle Scholar
  71. 71.
    C. Caux, C. Massacrier, B. Vanbervliet, B. Dubois, C. Van Kooten, I. Durand, and J. Banchereau, Activiation of human dendritie cells through CD40 cross-linking, J. Exp. Med. 180, 1263–1272 (1994).PubMedCrossRefGoogle Scholar
  72. 72.
    L. Flores-Romo, P. Bjorck, V. Duvert, C. Van Kooten, S. Saeland, and J. Banchereau, CD40 ligation on human CD34+ hematopoietic progenitors induces their proliferation and differentiation into functional dendritic cells, J. Exp. Med. 185, 341–349 (1997).PubMedCrossRefGoogle Scholar
  73. 73.
    J. P. Ridge, F. Di Rosa, and P. Matzinger, A conditioned dendritic cell can be a temporal bridge between a CD4+ T helper and a T-killer cell, Nature, 393, 474–478 (1998).PubMedCrossRefGoogle Scholar
  74. 74.
    S. R. M. Bennett, F. R. Carbone, F. Karamalis, R. A. Flavell, J. F. A. P. Miller, and W. R. Heath, Help for cytotoxic-T-cell responses is mediated by CD40 signalling, Nature, 393, 478–480 (1998).PubMedCrossRefGoogle Scholar
  75. 75.
    S. P. Schoenberger, R. E. M. Toes, E. I. H. van der Voort, R. Offringa, and C. J. M. Melief, T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions, Nature, 393, 480–483 (1998).PubMedCrossRefGoogle Scholar
  76. 76.
    R. M. Steinman, S. Turley, I. Mellman, and K. Inaba, The induction of tolerance by dendritic cells that have captured apoptotic cells, J. Exp. Med. 191, 411–416 (2000).PubMedCrossRefGoogle Scholar
  77. 77.
    R. M. Steinman, and M. C. Nussenzweig, Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance, Proc. Natl. Acad. Sci. USA, 99, 351–358 (2002).PubMedCrossRefGoogle Scholar
  78. 78.
    G. Jego, A. K. Palucka, J. P. Blanck, C. Chalouni, V. Pascual, and J. Banchereau, Plasmacytoid dendritie cells induce plasma cell differentiation through type I interferon and interleukin 6, Immunity. 19, 225–234 (2003).PubMedCrossRefGoogle Scholar
  79. 79.
    M. Balazs, F. Martin, T. Zhou, and J. F. Kearney, Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses, Immunity. 17, 341–352 (2002).PubMedCrossRefGoogle Scholar
  80. 80.
    H. C. Probst, J. Lagnel, G. Kollias, and M. van den Broek, Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance, Immunity. 18, 713–720 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Ralph M. Steinman
    • 1
  • Laura Bonifaz
    • 1
  • Shin-ichiro Fujii
    • 1
  • Kang Liu
    • 1
  • David Bonnyay
    • 1
  • Sayuri Yamazaki
    • 1
  • Maggi Pack
    • 1
  • Daniel Hawiger
    • 2
  • Tomonori Iyoda
    • 3
  • Kayo Inaba
    • 3
  • Michel C. Nussenzweig
    • 2
  1. 1.Laboratories of Cellular Physiology and ImmunologyThe Rockefeller UniversityNew YorkUSA
  2. 2.Molecular Immunology, and the Chris Browne Center for Immunology and Immune DiseasesThe Rockefeller UniversityNew YorkUSA
  3. 3.Department of Animal Development and Physiology, Graduate School of BiostudiesKyoto UniversityKyotoJapan

Personalised recommendations