A Projection-Type Algorithm for Pseudomonotone Nonlipschitzian Multivalued Variational Inequalities

  • T. Q. Bao
  • P. Q. Khanh
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 77)

Abstract

We propose a projection-type algorithm for variational inequalities involving multifunction. The algorithm requires two projections on the constraint set only in a part of iterations (one third of the subcases). For the other iterations, only one projection is used. A global convergence is proved under the weak assumption that the multifunction of the problem is pseudomonotone at a solution, closed, lower hemicontinuous, and bounded on each bounded subset (it is not necessarily continuous). Some numerical test problems are implemented by using MATLAB with encouraging effectiveness.

Keywords

Variational inequalities multifunctions projections pseudo monotonicity closedness lower hemicontinuity boundedness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber Y. I. (1983), Recurence relations and variational inequalities, it Soviet Mathematics, Doklady, Vol. 27, pp. 511–517.MATHGoogle Scholar
  2. Goldstein A. A. (1964), Convex programming in Hilbert space, Bulletin of The American Mathematical Society, Vol. 70, pp. 709–710.MATHCrossRefMathSciNetGoogle Scholar
  3. He B. (1997), A class of projection and contraction methods for monotone variational inequalities, Applied Mathematical Optimization, Vol. 35, pp. 69–76.MATHCrossRefGoogle Scholar
  4. He B. S., Liao L. Z. (2002), Improvements of some projection methods for monotone nonlinear variational inequalities, Journal of Optimization Theory and Applications, Vol. 112, pp. 111–128.MathSciNetCrossRefMATHGoogle Scholar
  5. He B. S., Yang H., Meng Q. and Han D. R. (2002), Modified Goldstein-Levitin-Polyak projection method for asymmetric strongly monotone variational inequalities, Journal of Optimization Theory and Applications, Vol. 112, pp. 129–143.MathSciNetCrossRefMATHGoogle Scholar
  6. Iusem A. N., Pérez L. R. L. (2000), An extragradient type algorithm for nonsmooth variational inequalities, Optimization, Vol. 48, pp. 309–332.MathSciNetMATHGoogle Scholar
  7. Iusem A. N., Svaiter B. F. (1997), A variant of Korpelevich’s method for variational inequalities with a new search strategy, Optimization, Vol. 42, pp. 309–321.MathSciNetMATHGoogle Scholar
  8. Korpelevich G. M. (1976), The extragradient method for finding saddle points and other problems, Ecomomika i Matematicheskie Metody, Vol. 12, pp. 747–756.MATHGoogle Scholar
  9. Levitin E. S., Polyak B. T. (1966), Constrained minimization problem, USSR Computational Mathematics and Mathematical Physics, Vol. 6, pp. 1–50.CrossRefGoogle Scholar
  10. Martinet B. (1970), Regularization d’inéquations variationelles par approximations successives, Revue d’ Automatique Informatique et Recherche Opérationelle, Vol. 4, pp. 154–158.MATHMathSciNetGoogle Scholar
  11. Martinet B. (1972), Determination approchée d’un point fixed d’une application pseudo-contractante, C. R. Academic Science Paris Ser. A-B, Vol. 274, pp. 163–165.MATHMathSciNetGoogle Scholar
  12. Noor M. A. (1999), A modified extragradient method for general monotone variational inequalities”, Computers and Mathematics with Applications, Vol. 38, pp. 19–24.MATHMathSciNetCrossRefGoogle Scholar
  13. Noor M. A. (2001a), Some predictor-corrector algorithms for multivalued variational inequalities, Journal of Optimization Theory and Applications, Vol. 108, pp. 659–671.MATHMathSciNetCrossRefGoogle Scholar
  14. Noor M. A. (2001b), Iterative schemes for quasimonotone mixed variational inequalities, Optimization, Vol. 50, pp. 29–44.MATHMathSciNetGoogle Scholar
  15. Noor M. A. (2001c), Modified resolvent splitting algorithms for general mixed variational inequalities, Journal of Computational and Applied Mathematics, Vol. 135, pp. 111–124.MATHMathSciNetCrossRefGoogle Scholar
  16. Noor M. A. (2003a), New extragradient-type methods for general variational inequalities, Journal of Mathematical Analysis and Applications, Vol. 277, pp. 379–394.MATHMathSciNetCrossRefGoogle Scholar
  17. Noor M. A. (2003b), Pseudomonotone general mixed variational inequalities, Applied Mathematics and Applications, Vol. 141, pp. 529–540.MATHMathSciNetGoogle Scholar
  18. Noor M. A. (2003c), Extragradient methods for pseudomonotone variational inequalities, Journal of Optimization Theory and Applications, Vol. 117, pp. 475–488.MATHMathSciNetCrossRefGoogle Scholar
  19. Noor M. A., Rassias T. M. (1999), Projection methods for monotone variational inequalities, Journal of Optimization Theory and Applications, Vol. 137, pp. 405–412.MathSciNetGoogle Scholar
  20. Noor M. A., Wang Y. J., Xiu N. H. (2002), Projection iterative schemes for general variational inequalities, Journal of Inequalities in Pure and Applied Mathematics, Vol. 3, pp. 1–8.MathSciNetGoogle Scholar
  21. Noor M. A., Wang Y. J., Xiu N. H. (2003), Some new projection methods for variational inequalities, Applied Mathematics and Computation, Vol. 137, pp. 423–435.MathSciNetCrossRefMATHGoogle Scholar
  22. Rockafellar R. T. (1976a), Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, Vol. 14, pp. 877–898.MATHMathSciNetCrossRefGoogle Scholar
  23. Rockafellar R. T. (1976b), Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Mathematics Operations Research, Vol. 1, pp. 97–116MATHMathSciNetCrossRefGoogle Scholar
  24. Sibony M. (1970), Méthodes itératives pour les équations et inéquations aux dérivées partielles non linéaires de type monotone, Calcolo, Vol. 7, pp. 65–183.MATHMathSciNetGoogle Scholar
  25. Solodov M. V., Svaiter B. F. (1999), A new projection method for variational inequality problems, SIAM Journal on Control and Optimization, Vol. 37, pp. 165–176.MathSciNetCrossRefGoogle Scholar
  26. Solodov M.V., Tseng P. (1996), Modified projection-type methods for monotone variational inequalities, SIAM Journal on Control and Optimization, Vol. 34, pp. 1814–1830.MathSciNetCrossRefMATHGoogle Scholar
  27. Tseng P. (1997), Alternating projection-proximal methods for convex programming and variational inequalities, SIAM Journal on Optimization, Vol. 7, pp. 951–965.MATHMathSciNetCrossRefGoogle Scholar
  28. Wang Y.J., Xiu N.H., Wang C.Y. (2001a), Unified framework of extragradient-type methods for pseudomonotone variational inequalities, Journal of Optimization Theory and Applications, Vol. 111, pp. 641–656.MathSciNetCrossRefMATHGoogle Scholar
  29. Wang Y.J., Xiu N.H., Wang C.Y. (2001b), A new version of the extragradient method for variational inequality problems, Computers and Mathematics with Applications, Vol. 42, pp. 969–979.MathSciNetCrossRefMATHGoogle Scholar
  30. Xiu N.H., Zhang J.Z. (2002), Local convergence analysis of projection-type algorithms: unified approach, Journal of Optimization Theory and Applications, Vol. 115, pp. 211–230.MathSciNetCrossRefMATHGoogle Scholar
  31. Zhao Y.B. (1997), The iterative methods for monotone generalized variational inequalities, Optimization, Vol. 42, pp. 285–307.MATHMathSciNetGoogle Scholar
  32. Zhao Y.B. (1999), Extended projection methods for monotone variational inequalities, Journal of Optimization Theory and Applications, Vol. 100, pp. 219–231.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • T. Q. Bao
    • 1
  • P. Q. Khanh
    • 2
  1. 1.Department of MathematicsWayne State UniversityUSA
  2. 2.Department of Mathematics, International UniversityVietnam National University of Hochiminh CityVietnam

Personalised recommendations