# Introduction to Convex and Quasiconvex Analysis

• Johannes B.G. Frenk
• Gábor Kassay
Chapter
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 76)

## Abstract

In the first chapter of this book the basic results within convex and quasiconvex analysis are presented. In Section 2 we consider in detail the algebraic and topological properties of convex sets within ℝn together with their primal and dual representations. In Section 3 we apply the results for convex sets to convex and quasiconvex functions and show how these results can be used to give primal and dual representations of the functions considered in this field. As such, most of the results are well known with the exception of Subsection 3.4 dealing with dual representations of quasiconvex functions. In Section 3 we consider applications of convex analysis to noncooperative game and minimax theory, Lagrangian duality in optimization and the properties of positively homogeneous evenly quasiconvex functions. Among these result an elementary proof of the well-known Sion’s minimax theorem concerning quasiconvex-quasiconcave bifunctions is presented, thereby avoiding the less elementary fixed point arguments. Most of the results are proved in detail and the authors have tried to make these proofs as transparent as possible. Remember that convex analysis deals with the study of convex cones and convex sets and these objects are generalizations of linear subspaces and affine sets, thereby extending the field of linear algebra. Although some of the proofs are technical, it is possible to give a clear geometrical interpretation of the main ideas of convex analysis. Finally in Section 5 we list a short and probably incomplete overview on the history of convex and quasiconvex analysis.

### Keywords

Convex Analysis Quasiconvex Analysis Noncooperative games Minimax Optimization theory

## Preview

### References

1. [1]
Aubin, J.B., Optima and Equilibria (An introduction to nonlinear analysis), Graduate Texts in Mathematics, v. 140, Springer Verlag, Berlin, 1993.Google Scholar
2. [2]
Avriel, M., Diewert, W.E., Schaible, S. and I. Zang, Generalized Concavity, in Mathematical Concepts and Methods in Science and Engineering, v. 36, Plenum Press, New York, 1988.Google Scholar
3. [3]
Bazaara, M.S., Sherali, H.D. and C.N. Shetty, Nonlinear Programming (Theory and Applications), Wiley, New York, 1993.Google Scholar
4. [4]
Bazaara, M.S., Jarvis, J.J. and H.D. Sherali, Linear Programming and Network Flows (Second Edition), Wiley, New York, 1990.Google Scholar
5. [5]
Bonnesen, T. and W. Fenchel, Theorie der konvexen Körper, Springer Verlag, Berlin, 1974.Google Scholar
6. [6]
Breckner, W.W. and G. Kassay, A systematization of convexity concepts for sets and functions, Journal of Convex Analysis, 4, 1997, 1–19.
7. [7]
Brunn, H., Über Ovale und Eiflächen, Inauguraldissertation, University of München, 1887.Google Scholar
8. [8]
Brunn, H., Über Kurven ohne Wendepunkte, Habilitationsschrift, University of München, 1889.Google Scholar
9. [9]
Brunn, H., Zur Theorie der Eigebiete, Arch. Math. Phys. Ser. 3, 17, 1910, 289–300.Google Scholar
10. [10]
Choquet, G., Lectures on Analysis: Volume 2 Representation Theory, in Mathematics Lecture Note Series, W.A. Benjamin, London, 1976.Google Scholar
11. [11]
Crouzeix, J.-P., Continuity and differentiability of quasiconvex functions, Chapter 3 in this volume.Google Scholar
12. [12]
Crouzeix, J.-P., Contributions a l’ étude des fonctions quasiconvexes, Université de Clermond-Ferrand 2, France, 1977.Google Scholar
13. [13]
Crouzeix, J.-P., Conditions for convexity of quasiconvex functions, Mathematics of Operations Research, 5, 1980, 120–125.
14. [14]
Crouzeix, J.-P., A duality framework in quasiconvex programming, in Generalized Concavity in Optimization and Economics, Schaible, S. and W.T. Ziemba, eds., Academic Press, 1981, 207–225.Google Scholar
15. [15]
Crouzeix, J.-P., Continuity and differentiability properties of quasiconvex functions on ℝn, in Generalized Concavity in Optimization and Economics, Schaible, S. and W.T. Ziemba, eds., Academic Press, 1981, 109–130.Google Scholar
16. [16]
De Finetti, B., Sulle stratificazioni convesse, Ann. Mat. Pura Appl., [4]30, 1949, 173–183.Google Scholar
17. [17]
Dudley, R.M., Real Analysis and Probability, Wadsworth and Brooks/Cole, Pacific Grove, 1989.Google Scholar
18. [18]
Edwards, R.E., Functional Analysis: Theory and Applications, Holt, Rinehart and Winston, Chicago, 1965.Google Scholar
19. [19]
Faigle, U., Kern, W. and G. Still, Algorithmic Principles of Mathematical Programming, in Kluwer texts in Mathematical Sciences, v. 24, Kluwer Academic Publishers, Dordrecht, 2002.Google Scholar
20. [20]
Farkas, J., Uber die Theorie der einfache Ungleichungen, Journal für die Reine und Angewandte Mathematik, 124, 1901, 1–27.
21. [21]
Fenchel, W., On conjugate convex functions, Canadian Journal of Mathematics, 1, 1949, 73–77.
22. [22]
Fenchel, W., Convex Cones, Sets and Functions, Lecture notes, Princeton University, 1951.Google Scholar
23. [23]
Fenchel, W., A remark on convex sets and polarity, Communication Seminar on Mathematics, University of Lund supplementary volume, 1952, 22–89.Google Scholar
24. [24]
Frenk, J.B.G and G. Kassay, On classes of generalized convex functions, Gordan-Farkas type theorems and Lagrangian duality, Journal of Optimization Theory and Applications, [2]102, 1999, 315–343.
25. [25]
Frenk, J.B.G. and G. Kassay, Lagrangian duality and cone convexlike functions, Econometric Institute, Erasmus University Rotterdam, Tech. Rep. 2000-27/A, 2000.Google Scholar
26. [26]
Frenk, J.B.G. and G. Kassay, Minimax results and finite dimensional separation, Journal of Optimization Theory and Applications, [2]113, 2002, 409–421.
27. [27]
Frenk, J.B.G., Dias, D.M.L. and J. Gromicho, Duality theory for convex and quasiconvex Functions and its application to optimization, in Generalized Convexity: Proceedings Pecs, Hungary, 1992, Komlósi, S., Rapcsák, T. and S. Schaible, eds., Lecture notes in Economics and Mathematics, 405, 1994, 153–171.Google Scholar
28. [28]
Frenk, J.B.G., Kassay, G. and J. Kolumbán, On equivalent results in minimax theory, European Journal of Operational Research 157, 2004, 46–58.
29. [29]
Frenk, J.B.G., Protassov, V. and G. Kassay, On Borel probability measures and noncooperative game theory, Report Series Econometric Institute, Erasmus University Rotterdam, Tech. Rep. EI-2002-32, 2002.Google Scholar
30. [30]
Giorgio, G. and S. Komlósi, Dini derivatives in optimization-Part I, Rivista di Matematica per le Scienze Economiche e Sociali, [1]15, 1992, 3–30.Google Scholar
31. [31]
Glover, F., Surrogate constraints, Operations Research, 16, 1967, 741–749.
32. [32]
Greenberg, H.J. and W.P. Pierskalla, Quasiconjugate functions and surrogate duality, Cahiers du Centre d’étude de Recherche Operationelle, [4]15, 1973, 437–448.
33. [33]
Gromicho, J., Quasiconvex Optimization and Location Theory, in Applied Optimization, v. 9, Kluwer Academic Publishers, Dordrecht, 1998.Google Scholar
34. [34]
Hiriart-Urruty, J.B. and C. Lemaréchal, Convex Analysis and Minimization Algorithms I, in Grundlehren der Mathematischen Wissenschaften, v. 305, Springer Verlag, Berlin, 1993.Google Scholar
35. [35]
Hiriart-Urruty, J.B. and C. Lemaréchal, Convex Analysis and Minimization Algorithms II, in Grundlehren der Mathematischen Wissenschaften, v. 306, Springer Verlag, Berlin, 1993.Google Scholar
36. [36]
37. [37]
Holmes, R.B., Geometric Functional Analysis and its Applications, Springer, New York, 1975.Google Scholar
38. [38]
Jahn, J., Mathematical Vector Optimization in Partially Ordered Spaces, Peter Lang, Fankfurt am Main, 1986.Google Scholar
39. [39]
Jensen, J.L.W.V., Sur les functions convexes et les inégalités entre des valeurs moyennes, Acta Math., 30, 1906, 175–193.
40. [40]
Joó, I., A simple proof for von Neumann’s minimax theorem, Acta Sci. Math. Szeged, 42, 1980, 91–94.
41. [41]
Joó, I., Note on my paper: A simple proof for von Neumann’s minimax theorem, Acta Math. Hung., [3–4]44, 1984, 171–176.
42. [42]
Joó, I., On some convexities, Acta Math.Hung., [1–2]54, 1989, 163–172.Google Scholar
43. [43]
Kolmogorov, A.N. and S.V. Fomin, Introductory Real Analysis, in Dover books on Mathematics, Dover Publications, New York, 1975.Google Scholar
44. [44]
Komlósi, S., Quasiconvex first-order approximations and Kuhn-Tucker type optimality conditions, European Journal of Operational Research, 65, 1993, 327–335.
45. [45]
Komlósi, S., Farkas theorems for positively homogeneous quasiconvex functions, Journal of Statistics and Management Systems, 5, 2002, 107–123.
46. [46]
Kreyszig, E., Introductory Functional Analysis with Applications, Wiley, New York, 1978.Google Scholar
47. [47]
Lancaster, P. and M. Tismenetsky, The Theory of Matrices (Second Edition with Applications), in Computer Science and Applied Mathematics, Academic Press, Orlando, 1985.Google Scholar
48. [48]
Mandelbrojt, S., Sur les fonctions convexes, C.R. Acad. Sci. Paris, 209, 1939, 977–978.Google Scholar
49. [49]
Martínez-Legaz, J.-E.,Generalized convex duality and its economic applications, Chapter 6 in this volume.Google Scholar
50. [50]
Martínez-Legaz, J.-E.,Un concepto generalizado deconjugacion, application a las funciones quasiconvexas, M.Sc. Thesis, Universidad de Barcelona, 1981.Google Scholar
51. [51]
Minkowski, H., Algemeine Lehrsätze über die convexen Polyeder, Nachr. Ges. Wiss. Göttingen Math. Phys. K1, 1897, 198–219.Google Scholar
52. [52]
Minkowski, H., Geometrie der Zahlen, Teubner, Leipzig, 1910.Google Scholar
53. [53]
Nesterov, Y. and A. Nemirovski, Interior Point Polynomial Algorithms in Convex Programming, in SIAM Studies in Applied Mathematics, SIAM, Philadelphia, 1994.Google Scholar
54. [54]
Nocedal, J. and S.J. Wright, Numerical Optimization, in Springer series in Operations Research, Springer Verlag, New York, 1999.Google Scholar
55. [55]
Passy, U. and E.Z. Prisman, Conjugacy in quasi-convex programming, Mathematical Programming, 30, 1984, 121–146.
56. [56]
Penot, J.-P. and M. Volle, On quasi-convex duality, Mathematics of Operations Research, [4]15, 1990, 597–624.
57. [57]
Peterson, E.L., The fundamental relations between geometric programming duality, parametric programming duality and ordinary Lagrangian duality, Annals of Operations Research, 105, 2001, 109–153.
58. [58]
Ponstein, J., Approaches to the Theory of Optimization, Cambridge University Press, Cambridge, 1980.Google Scholar
59. [59]
Popoviciu, T., Deux remarques sur les fonctions convexes, Bull. Sc. Acad. Roumaine, 20, 1938, 45–49.
60. [60]
Popoviciu, T., Les Fonctions Convexes, Hermann, Paris, 1945.Google Scholar
61. [61]
Prekopa, A., On the development of optimization theory, American Mathematical Monthly, [7]87, 1980, 527–542.
62. [62]
Roberts, A.V. and D.E. Varberg, Convex Functions, Academic Press, New York, 1973.Google Scholar
63. [63]
Rockafellar, R.T., Convex Analysis, in Princeton Mathematical Series, v. 28, Princeton University Press, Princeton, New Jersey, 1972.Google Scholar
64. [64]
Rudin, W., Principles of Mathematical Analysis, McGraw-Hill, New York, 1976.Google Scholar
65. [65]
Rudin, W., Functional Analysis, McGraw-Hill, New York, 1991.Google Scholar
66. [66]
Sion, M., On general minimax theorems, Pacific Journal of Mathematics, 8, 1958, 171–176.
67. [67]
Sturm, J.F., Primal-Dual Interior Point Approach to Semidefinite Programming, PhD. Thesis, Econometric Institute, Erasmus University Rotterdam, 1997.Google Scholar
68. [68]
Valentine, F.A., Convex Sets, Mc-Graw Hill, San Francisco, 1964.Google Scholar
69. [69]
van Tiel, J., Convex Analysis: an Introductory Text, Wiley, New York, 1984.Google Scholar
70. [70]
Ville, J., Sur la théorie générale des jeux au intervient l’habilité des jouers, [2](5), in Traité du calcul des probabilités et de ses applications, E. Borel and others, eds., Gauthier-Villars Cie, Paris, 1938, 105–113.Google Scholar
71. [71]
Von Neumann, J., Zur Theorie der Gesellschaftsspiele, Math. Ann, 100, 1928, 295–320.
72. [72]
Vorob’ev, N.N., Game Theory: Lectures for Economists and Systems Scientists, in Applications of Mathematics, v. 7, Springer Verlag, New York, 1977.Google Scholar
73. [73]
Wolkowicz, H., Some applications of optimization in matrix theory, Linear Algebra and Its Applications, 40, 1981, 101–118.
74. [74]
Yuang, G.X.-Z., KKM Theory and Applications in Nonlinear Analysis, Marcel Dekker, New York, 1999.Google Scholar