Advertisement

Nanoscale Structural and Magnetic Characterization Using Electron Microscopy

  • David J. Smith
  • Martha R. McCartney
  • Rafal E. Dunin-Borkowski

Abstract

The transmission electron microscope (TEM) is a powerful instrument for structural, chemical and magnetic characterization at the nanoscale. Imaging, diffraction and microanalytical information can be combined with complementary micromagnetic information to provide a more thorough understanding of magnetic behavior. The first part of this chapter provides a brief overview of TEM operating modes that are suitable for examination of magnetic materials. The latter part provides examples that serve to illustrate the diverse range of materials that can be usefully studied.

Keywords

Tunnel Junction Vortex State Nanoscale Structural Magnetic Tunnel Junction Transmission Electron Microscope Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. S. P. Parkin, Ann. Revs. Mater. Sci. 25, 357 (1995).CrossRefADSGoogle Scholar
  2. [2]
    S. S. P. Parkin, N. More, and K.P. Roche, Phys. Rev. Lett. 64, 2304 (1990).CrossRefADSGoogle Scholar
  3. [3]
    D. J. Smith, Rep. Prog. Phys. 60, 1513 (1997).CrossRefADSGoogle Scholar
  4. [4]
    J. N. Chapman and M. R. Scheinfein, J. Magn. Magn. Mater. 200, 729 (1999).CrossRefADSGoogle Scholar
  5. [5]
    R. E. Dunin-Borkowski, M. R. McCartney, and D. J. Smith, in “Encyclopedia of Nanoscience and Nanotechnology”, Ed. H.S. Nalwa, American Scientific, Stevenson Ranch 2003, Volume X, Pp. 1–59.Google Scholar
  6. [6]
    C. L. Platt, A. E. Berkowitz, D. J. Smith and M. R. McCartney, J. Appl. Phys. 88, 2058 (2000).CrossRefADSGoogle Scholar
  7. [7]
    D. J. Smith, M. R. McCartney. C. L. Platt, and A. E. Berkowitz, J. Appl. Phys, 83, 5154 (1998).CrossRefADSGoogle Scholar
  8. [8]
    G. S. D. Beach, F. T. Parker, D. J. Smith, P. A. Crozier, and A. E. Berkowitz, Phys. Rev. Lett. 91, 267201 (2003).CrossRefADSGoogle Scholar
  9. [9]
    L. Gu, S. Wu, H.-X. Liu, R. Singh, N. Newman, and D. J. Smith, J. Magn. Magn. Mater. 291, 1395 (2005).CrossRefADSGoogle Scholar
  10. [10]
    M. R. McCartney, R. E. Dunin-Borkowski, M. R. Scheinfein, D. J. Smith, S. Gider, and S. S. P. Parkin, Science, 286, 1337 (1999).CrossRefGoogle Scholar
  11. [11]
    S. S. P. Parkin, Z. G. Li, and D. J. Smith, Appl. Phys. Lett. 58, 2910 (1991).CrossRefGoogle Scholar
  12. [12]
    D. J. Smith, A. R. Modak, T. Rabedeau, and S. S. P. Parkin, Appl. Phys. Lett. 71,1480 (1997).CrossRefADSGoogle Scholar
  13. [13]
    R. F. C. Farrow, D. Weller, R. F. Marks, M. F. Toney, D. J. Smith, and M. R. McCartney, J. Appl. Phys. 84, 934 (1998).CrossRefADSGoogle Scholar
  14. [14]
    S. S. P. Parkin, K.-S. Moon, K. E. Pettit, D. J. Smith, R. E. Dunin-Borkowski, and M. R. McCartney, Appl. Phys. Lett. 75, 543 (1999).CrossRefADSGoogle Scholar
  15. [15]
    H. Wang, M. R. McCartney, D. J. Smith, X. Jiang, R. Wang, S. van Dijken, and S. S. P. Parkin, J. Appl. Phys. 97, 104514 (2005).CrossRefADSGoogle Scholar
  16. [16]
    S. Sankar, A. E. Berkowitz, and D. J. Smith, Appl. Phys. Lett. 73, 535 (1998).CrossRefADSGoogle Scholar
  17. [17]
    S. Sankar, A. E. Berkowitz, and D. J. Smith, Phys. Rev. B 62, 14273 (2000).CrossRefADSGoogle Scholar
  18. [18]
    M. J. Hÿtch, R. E. Dunin-Borkowski, M. R. Scheinfein, J. Moulin, C. Duhamel, F. Mazaleyrat, and Y. Champion, Phys. Rev. Lett. 91, 257207 (2003).CrossRefADSGoogle Scholar
  19. [19]
    S.L. Tripp, R.E. Dunin-Borkowski, and A. Wei, Angew. Chem. Int. Ed. 42, 5591 (2003).CrossRefGoogle Scholar
  20. [20]
    R.E. Dunin-Borkowski, M.R. McCartney, B. Kardynal, and D.J. Smith, J. Appl. Phys. 84, 374 (1998).CrossRefADSGoogle Scholar
  21. [21]
    R.E. Dunin-Borkowski, M.R. McCartney, B. Kardynal, D.J. Smith, and M.R. Scheinfein, App;l. Phys. Lett. 75, 2641 (1999).CrossRefADSGoogle Scholar
  22. [22]
    J.G. Zhu, Y. Zheng, and G.A. Prinz, J. Appl. Phys. 87, 6668 (2000).CrossRefADSGoogle Scholar
  23. [23]
    H. Hu, H. Wang, M.R. McCartney, and D.J. Smith, J. Appl. Phys. 97, 054305 (2005).CrossRefADSGoogle Scholar
  24. [24]
    R.J. Harrison, R.E. Dunin-Borkowski, and A. Putnis, Proc. Nat. Acad. Sci (US) 99, 16556 (2002).CrossRefADSGoogle Scholar
  25. [25]
    R.E. Dunin-Borkowski, M.R. McCartney, R.B. Frankel, D.A. Bazylinski, M. Posfai, and P.R. Buseck, Science, 282, 1868 (1998).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • David J. Smith
    • 1
  • Martha R. McCartney
    • 1
  • Rafal E. Dunin-Borkowski
    • 2
  1. 1.Department of Physics and Astronomy and Center for Solid State ScienceArizona State UniversityTempeUSA
  2. 2.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations