Media for Extremely High Density Recording

  • D. Weller
  • T. McDaniel

Abstract

The development and engineering of the magnetic material that stores information largely determines the progress of magnetic storage technology, as epitomized by magnetic hard disks. In this chapter, we consider the ultimate capability for the storage of digital information. Noise performance and spatial resolution are key parameters in recording media and an ongoing challenge in advancing the areal density. The dominant media noise source today is transition jitter noise, or the uncertainty in positioning neighboring bit transitions. In sputtered media, it reflects the finite size, random positioning and dispersions in size, orientation and magnetic properties of the fine grains that comprise the media. Highly anisotropic materials, combined with heat-assisted magnetic recording (HAMR), promise significant reductions in the average, thermally stable grain size from currently about 7–9 nm in Co-alloys to about 2–3 nm in FePt-based media. In addition, self-organized magnetic arrays (SOMA) promise a significant reduction in jitter noise, because they yield nearly monodisperse magnetic nanoparticles such as FePt and Co. SOMA media may serve not only as conventional media with reduced dispersions and media with bit-transitions defined by rows of particles, but may also be scaled to the ultimate goal of single-particle-per-bit recording. In this last scenario, the eventual areal density is governed by the minimal thermally stable size and by the center-to-center spacing of neighboring particles. Ultimately, subject to the mastering of all writability, signal retrieval, bit-addressability and spacing issues, areal densities of the order of 40–50 terabit per square inch may be reached.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.R. Schaller, IEEE Spectrum 34(6), 52 (1997).CrossRefGoogle Scholar
  2. [2]
    M. Nieto, F. Lopez, and F. Cruz, Technovation 18(6–7), 439 (1998); CM. Christensen, Production and Operations Management 1(4), 334 (1992); “Part II: Architectural Technologies”, op.cit. 358 (1992).CrossRefGoogle Scholar
  3. [3]
    S. H. Charap, Pu Ling Lu, and Yanjun He, IEEE Trans. Magn. 33, 978 (1997).CrossRefADSGoogle Scholar
  4. [4]
    D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999).CrossRefADSGoogle Scholar
  5. [5]
    M. Alex, A. Tselikov, T. McDaniel, N. Deeman, T. Valet, and D. Chen, IEEE Trans. Magn. 37, 1244 (2001).CrossRefADSGoogle Scholar
  6. [6]
    H. Sukeda, H. Saga, H. Nemoto, Y. Itou, C. Haginoya, and F. Matsumoto, IEEE Trans. Magn. 37, 1234 (2001).CrossRefADSGoogle Scholar
  7. [7]
    J. J. M. Ruigrok, R. Coehoorn, S. R. Cumpson, and H. W. Kesteren, J. Appl. Phys. 87, 5398 (2000).CrossRefADSGoogle Scholar
  8. [8]
    H. J. Richter, “Dynamic Effects in High-Density Recording Media”, in: The Physics of Ultra-High-Density Magnetic Recording, Eds. Plumer, van Ek, Weller, Springer 2001, chapter 6.Google Scholar
  9. [9]
    JC. Mallinson, “The Foundations of Magnetic Recording”, 2nd edition, Academic Press, 1993.Google Scholar
  10. [10]
    D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, (2000).Google Scholar
  11. [11]
    R. Wood, IEEE Trans. Magn. 36(1), 36 (2000).CrossRefADSGoogle Scholar
  12. [12]
    R. H. Victora, K. Senanan, and J. Xue, IEEE Trans. Magn. 38(5), 1886 (2002).CrossRefADSGoogle Scholar
  13. [13]
    M. Mallary, A. Torabi, and M. Benakli, IEEE Trans. Magn. 38(4), 1719 (2002).CrossRefADSGoogle Scholar
  14. [14]
    H. J. Richter and A. Yu. Dobin, J. Magn. Magn. Mater. 287, 41 (2005).CrossRefADSGoogle Scholar
  15. [15]
    K. Gao and H. N. Bertram, IEEE Trans. Magn. 38(6), 3675 (2002).CrossRefADSGoogle Scholar
  16. [16]
    Y. Y. Zou, J. P. Wang, C. H. Hee, and T. C. Chong, Appl. Phys. Lett. 82, 2473 (2003).CrossRefADSGoogle Scholar
  17. [17]
    M. H. Kryder and R. W. Gustafson, J. Magn. Magn. Mater. 287, 449 (2005).CrossRefADSGoogle Scholar
  18. [18]
    D. Gurarisco, Y. Wu, P. Luo, B.E. Higgins, and K. Saito, J. Magn. Magn. Mater. 287, 459 (2005).CrossRefADSGoogle Scholar
  19. [19]
    Y. Tanaka, J. Magn. Magn. Mater. 287, 468 (2005).CrossRefADSGoogle Scholar
  20. [20]
    Zheng Zhang, Tolga M. Duman and Erozan M. Kurtas, “Information Theory of Magnetic Recording Channels,” Coding and Signal Processing for Magnetic Recording Systems, Eds. Bane Vasic and Erozan M. Kurtas, CRC Press, 2004, pp. 12.1–12.20.Google Scholar
  21. [21]
    In a micro-track model, σ ja (〈D〉/W read)1/2, where a is the transition-width parameter. In the limit of negligible exchange a ≈ 〈D〉, hence σ ja (〈D3/W read)1/2; see e.g. H. N. Bertram, H. Zhou, and R. Gustafson, IEEE Trans. Magn. 34, 1845 (1998).CrossRefADSGoogle Scholar
  22. [22]
    J. Ahner (unpublished data, 2004); J. Ahner et al. (to be published).Google Scholar
  23. [23]
    E. E. Fullerton, O. Hellwig, Y. Ikeda, B. Lengsfield, K. Takano, and J. B. Kortright, IEEE Trans. Magn. 38, 1693 (2002).CrossRefADSGoogle Scholar
  24. [24]
    D. Weller and M. F. Doerner, Ann Rev Mat Sci 30, 611 (2000).CrossRefADSGoogle Scholar
  25. [25]
    L. Néel, Ann. Geophys. 5, 99 (1949).Google Scholar
  26. [26]
    W. T. Coffey, D. S. F. Crothers, J. L. Dorman, L. J. Geoghegan, and E. C. Kennedy, Phys. Rev. B 58, 3249 (1998).CrossRefADSGoogle Scholar
  27. [27]
    W.F. Brown, Jr. Phys. Rev. 130, 1677 (1963).CrossRefADSGoogle Scholar
  28. [28]
    P. Gaunt, J. Appl. Phys. 78, 3470 (1977).CrossRefADSGoogle Scholar
  29. [29]
    E. C. Stoner and E. P. Wohlfarth, Trans. Roy. Soc. A240, 599 (1948).MATHADSCrossRefGoogle Scholar
  30. [30]
    Hong Zhou (private communication): Demag = 8 arctan[kBWδ−1((Bk)2+W22)−1/2] ≈ 4π for realistic conditions (k≥8:max number of bits before head flux reversal, B=bitlength ≅ 40 nm @ 100 Gbit/in2, W=bit-width ≅ 140 nm @ 100 Gbit/in2, δ=medium thickness ≅10 nm.Google Scholar
  31. [31]
    A. Moser and D. Weller, “Thermal Effects in High Density Recording Media”, in The Physics of Ultra-High-Density Magnetic Recording, Eds. Plumer, van Ek, Weller, Springer 2001, chapter 5.Google Scholar
  32. [32]
    H. Zhou, H. N. Bertram, M. F. Doerner, and M. Mirzamaani, IEEE Trans. Magn. 35, 1239 (1999).CrossRefGoogle Scholar
  33. [33]
    H. N. Bertram, M. Marrow, J. Ohno, and J. K. Wolf, IEEE Trans. Magn. 40, 2311 (2004).CrossRefADSGoogle Scholar
  34. [34]
    H. J. Richter, “Dynamic Effects in High Density Recording Media”, “Dynamic Effects in High-Density Recording Media”, in The Physics of Ultra-High-Density Magnetic Recording, Eds. Plumer, van Ek, Weller, Springer 2001, chapter 6, page 201, eq. (6.24).Google Scholar
  35. [35]
    X.-W. Wu et al. J. Magn. Magn. Mater., to be published (2005)Google Scholar
  36. [36]
    T. Klemmer, D. Hoydick, H. Okumura, B. Zhang, and W. A. Soffa, Scripta Met. Mater. 33, 1793 (1995).CrossRefGoogle Scholar
  37. [37]
    D. J. Sellmyer, J. Zhou, Y. Liu, and R. Skomski, “Magnetism of Sputtered Sm-Co-Based Thin Films”, in Rare Earth Magnets and Their Applications, Eds. G.C. Hadjipanayis and M.J. Bonder, Rinton Press 2002, p. 712.Google Scholar
  38. [38]
    K. J. Strnat, in “Ferromagnetic Materials”, Eds. E. P. Wohlfarth, K. H. J. Buschow, vol. 4, North-Holland, Amsterdam 1998, pp. 131–209 and references cited therein.Google Scholar
  39. [39]
    J. Sayama, K. Mizutani, T. Asahi, J. Ariake, K. Ouchi, S. Matsunuma, and T. Osaka, J. Magn. Magn. Mater. 287, 239 (2005).CrossRefADSGoogle Scholar
  40. [40]
    Y. Yamada, T. Suzuki, H. Kanazawa, and J.C. Österman, J. Appl. Phys. 85, 5094 (1999) and refs. therein.CrossRefADSGoogle Scholar
  41. [41]
    H. Saga, H. Nemoto, H. Sukeda, and M. Takahashi, Jpn. J. Appl. Phys. 38, 1839 (1999).CrossRefADSGoogle Scholar
  42. [42]
    H. Takano, Y. Nishida, A. Kuroda, H. Sawaguchi, T. Kawabe, A. Ishikawa, H. Aoi, H. Muraoka, Y. Nakamura, and K. Ouchi, “A practical approach for realizing high-recording density hard disk drives”, paper CA-01, MMM/Intermag 2001, San Antonio, TX, January 7–11.Google Scholar
  43. [43]
    T. W. McDaniel, W. A. Challener, and K. Sendur, IEEE Trans. Magn., 39, 1972 (2003).CrossRefADSGoogle Scholar
  44. [44]
    Z. Zhang, A. K. Singh, J. Yin, A. Perumal, and T. Suzuki, J. Magn. Magn. Mater. 287, 224 (2005).CrossRefADSGoogle Scholar
  45. [45]
    M. L. Yan, X. Z. Li, L. Gao, S. H. Liou, and D. J. Sellmyer, Appl. Phys. Lett. 83, 3332 (2003).CrossRefADSGoogle Scholar
  46. [46]
    J.-U. Thiele, K. R. Coffey, M. F. Toney, J. A. Hedstrom, and A. J. Kellock, J. Appl. Phys. 91, 6595 (2002).CrossRefADSGoogle Scholar
  47. [47]
    J.-U. Thiele, S. Maat, and E. E. Fullerton, Appl. Phys. Lett. 82, 2859 (2003).CrossRefADSGoogle Scholar
  48. [48]
    J.-U. Thiele, S. Maat, J. Lee Robertson, and E. E. Fullerton, IEEE Trans. Magn. 40, 2537 (2004).CrossRefADSGoogle Scholar
  49. [49]
    G. Ju, J. Hohlfeld, B Bergman, R. J. M. van de Veerdonk, O. N. Mryasov, J.-Y. Kim, X. Wu, D. Weller, and B. Koopmans, Phys. Rev. Lett. 9, 197403 (2004).CrossRefADSGoogle Scholar
  50. [50]
    Y. Qiang, R. F. Sabirianov, S. S. Jaswal, H. Haberland, and D. J. Sellmyer, Phys. Rev. B 66, 064404 (2002).CrossRefADSGoogle Scholar
  51. [51]
    Y. Zhang, J. Wan, M. J. Bonder, G.C. Hadjipanayis, and D. Weller, J. Appl. Phys. 93, 7175 (2003).CrossRefADSGoogle Scholar
  52. [52]
    J. P. Wang and T. J. Zhou, Patterned Magnetic Nanostructures (invited chapter) in Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, in press.Google Scholar
  53. [53]
    J.-M. Qiu, J. H. Judy, D. Weller, and J.-P. Wang, J. Appl. Phys. 97, 10J319 (2005).CrossRefGoogle Scholar
  54. [54]
    R. H. Victora and Xiao Shen, “Exchange Coupled Composite media for Perpendicular Recording”, paper BB01, Intermag 2005, Nagoya, Japan (IEEE Trans. Magn. (2005) to be published).Google Scholar
  55. [55]
    D. Suess, T. Schrefl, M. Kirschner, G. Hrkac, and J. Fidler, “Optimization of Exchange Spring Perpendicular Recording Media”, paper GB07, Intermag 2005, Nagoya, Japan (IEEE Trans. Magn. (2005) to be published).Google Scholar
  56. [56]
    S. Sun, C. B. Murray, D. Weller, A. Moser, and L. Folks, Science 287, 1989 (2000).CrossRefADSGoogle Scholar
  57. [57]
    S. Sun, D. Weller, C. Murray, in “The Physics of Ultra-High-Density Magnetic Recording”, Eds. Plumer, van Ek, Weller, Springer 2001, Ch. 9.Google Scholar
  58. [58]
    B. D. Terris and T. Thomson, J. Phys. D: Appl. Phys. 38, R199 (2005).CrossRefADSGoogle Scholar
  59. [59]
    C. Liu, X. W. Wu, T. Klemmer, N. Shukla, X. M. Yang, D. Weller, A. Roy, M. Tanase, and D. E. Laughlin, J. Phys. Chem. B 108, 6121 (2004).CrossRefGoogle Scholar
  60. [60]
    R. Chantrell, D. Weller, T. Klemmer, E. Fullerton, and S. Sun, MMM Seattle, November 2001, J. Appl. Phys. (to be published).Google Scholar
  61. [61]
    T. J. Klemmer, C. Liu, N. Shukla, X. W. Wu, D. Weller, M. Tanase, D. E. Laughlin, and W. A. Soffa, J. Magn. Magn. Mater. 266, 79 (2003).CrossRefADSGoogle Scholar
  62. [62]
    H. Kodama, S. Momose, T. Sugimoto, T. Uzaumaki, and A. Tanaka, IEEE Trans. Magn. 41, 665 (2005).CrossRefADSGoogle Scholar
  63. [63]
    S. Kang, Z. Jia, D. Nikles, and J. W. Harrell, IEEE Trans. Magn. 39, 2753 (2003).CrossRefADSGoogle Scholar
  64. [64]
    S. Kang, Z. Jia, D. Nikles, and J. W. Harrell, J. Appl. Phys. 93, 7178 (2003).CrossRefADSGoogle Scholar
  65. [65]
    C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy, and D. E. Laughlin, J. Appl. Phys. 92, 6104 (2002).CrossRefADSGoogle Scholar
  66. [66]
    S. Kang, Z. Jia, S. Shi, D.E. Nikles, J.W. Harrell, Appl. Phys. Lett. 86, 062503 (2005).CrossRefADSGoogle Scholar
  67. [67]
    S. Kang, Z. Jia, D. E. Nikles, J.W. Harrell, J. Appl. Phys. 97, 10J318 (2005).CrossRefGoogle Scholar
  68. [68]
    Z. L. Wang, J. Phys. Chem. B 104, 1153 (2000).CrossRefGoogle Scholar
  69. [69]
    H. Zeng, P. M. Rice, S. X. Wang, and S. Sun, J. Am. Chem. Soc. 126, 11458 (2004).CrossRefGoogle Scholar
  70. [70]
    M. Tanase et al. (to be published)Google Scholar
  71. [71]
    p = pmax [1/(1+21/D)]2, with the maximum packing (l) = 0 nm) pmax= 1 for cubes, pmax = π/4 = 0.785 for cylinders and pmax = π/6 = 0.524 for spheres. D = particle core diameter, l = surfactant molecule chain length with 21 = w.Google Scholar
  72. [72]
    Y. K. Takahashi, T. Ohkubo, M. Ohnuma, and K. Hono, J. Appl. Phys. 93, 7166 (2003).CrossRefADSGoogle Scholar
  73. [73]
    B. Yang, M. Asta, O. N. Mryasov, T. Klemmer, and R. W. Chantrell, Acta Metallurgica, (accepted for publication, 2005).Google Scholar
  74. [74]
    K. Naito, H. Hieda, M. Sakurai, Y. Kamata, and K. Asakawa, IEEE Trans. Magn. 38, 1949 (2002).CrossRefADSGoogle Scholar
  75. [75]
    J. Y. Cheng, C. A. Ross, E. L. Thomas, H. I. Smith, R. G. H. Lammertink, and G. J. Vancso, IEEE Trans. Magn. 38, 2541 (2002).CrossRefADSGoogle Scholar
  76. [76]
    X. M. Yang, C. Liu, J. Ahner, J. Yu, T. Klemmer, E. C. Johns, and D. Weller, J. Vac. Sci and Tech. B 22, 31 (2004).CrossRefGoogle Scholar
  77. [77]
    A. Lyberatos and K. Yu. Guslienko, J. Appl. Phys. 94, 1119 (2003).CrossRefADSGoogle Scholar
  78. [78]
    A. Lyberatos and J. Hohlfeld, J. Appl. Phys. 95, 1949 (2004).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • D. Weller
    • 1
  • T. McDaniel
    • 2
  1. 1.Seagate Recording Media OperationsFremontUSA
  2. 2.Seagate ResearchPittsburghUSA

Personalised recommendations