The Aluminium-Amyloid Cascade Hypothesis and Alzheimer’s Disease

Aluminium and β-amyloid
  • Christopher Exley
Part of the Subcellular Biochemistry book series (SCBI, volume 38)


Aluminium (Al) is found associated with β-amyloid (Aβ) in the brain in Alzheimer’s disease. Al precipitates Aβ in vitro as distinct fibrillar structures composed of β-pleated sheets of peptide. The aetiology of their association in vivo is not known. Al is known to increase the brain Aβ burden in experimental animals and this might be due to a direct influence upon Aβ anabolism or direct or indirect affects upon Aβ catabolism. It is difficult to rationalise from an evolutionary perspective the precipitation and persistence of Aβ in vivo. However, Al has not been subject to the same evolutionary pressures as Aβ, it is a recent addition to the biotic environment, and its precipitation of Aβ may have only been subjected to natural selection in the recent past. Whether AD is also part of this ongoing selection process remains to be elucidated

Key words

Aluminium Aβ APP metabolism Aβ aggregation Aβ catabolism Aβ neurotoxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Backstrom, J.R., Lim, G.P., Cullen, M. and Tokes, Z.A., 1996, Matrix metalloproteinase-9 (MMP-9) is synthesised in neurons of the human hippocampus and is capable of degrading the amyloid-β peptide (1-40). J. Neurosci. 16: 7910–7919.PubMedGoogle Scholar
  2. Beauchemin, D. and Kisilevsky, R., 1998, A method based on ICP-MS for the analysis of Alzheimer’s amyloid plaques. Anal. Chem. 70: 1026–1029.PubMedCrossRefGoogle Scholar
  3. Bondy, S. C. and Truong, A., 1999, Potentiation of beta-folding of beta-amyloid peptide 25–35 by aluminum salts. Neurosci. Lett. 267: 25–28.PubMedCrossRefGoogle Scholar
  4. Bush, A.I., 2003, The metallobiology of Alzheimer’s disease. Trends in Neurosci. 26: 207–214.CrossRefGoogle Scholar
  5. Carson, J. A. and Turner, A. J., 2002, Beta-amyloid catabolism: roles for neprilysin (NEP) and other metallopeptidases? J. Neurochem. 81: 1–8.PubMedCrossRefGoogle Scholar
  6. Caughey, B. and Lansbury, P. T., 2003, Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Ann. Rev. Neurosci. 26: 267–298.PubMedCrossRefGoogle Scholar
  7. Clauberg, M. and Joshi, J. G., 1993, Regulation of serine protease activity by aluminum — Implications for Alzheimer-disease. Proc. Natl. Acad. Sci. USA 90: 1009–1012.PubMedCrossRefGoogle Scholar
  8. Duckett, S. and Galle, P., 1980, Electron microscope-microprobe studies of aluminium in the brains of cases of Alzheimer’s disease and aging patients. J. Neuropathol. Experiment. Neurol. 39: 350.CrossRefGoogle Scholar
  9. Exley, C, 1997, ATP-promoted amyloidosis of an amyloid beta peptide. Neuroreport 8: 3411–3414.PubMedGoogle Scholar
  10. Exley, C, 1998, The precipitation of mucin by aluminium. J. Inorg. Biochem. 70: 195–206.PubMedCrossRefGoogle Scholar
  11. Exley, C. (ed.), 2001, Aluminium and Alzheimer’s Disease: The Science that Describes the Link. Elsevier, Amsterdam.Google Scholar
  12. Exley, C, 2003, A biogeochemical cycle for aluminium? J. Inorg. Biochem. 97: 1–7.PubMedCrossRefGoogle Scholar
  13. Exley, C, 2004, The prooxidant activity of aluminium. Free Rad. Biol. Med. 36: 380–387.PubMedCrossRefGoogle Scholar
  14. Exley, C. and Korchazhkina, O., 2001a, The association of aluminium and βamyloid in Alzheimer’s disease. In Aluminium and Alzheimer’s Disease: The Science that Describes the Link (ed. C. Exley), pp. 421–434. Elsevier, Amsterdam.Google Scholar
  15. Exley, C. and Korchazhkina, O. V., 2001b, Plasmin cleaves A beta 42 in vitro and prevents its aggregation into beta-pleated sheet structures. Neuroreport 12: 2967–2970.PubMedCrossRefGoogle Scholar
  16. Exley, C. and Korchazhkina, O. V., 2001c, Promotion of formation of amyloid fibrils by aluminium adenosine triphosphate (A1ATP). J. Inorg. Biochem. 84: 215–224.PubMedCrossRefGoogle Scholar
  17. Exley, C, Price, N. C., Kelly, S. M. and Birchall, J. D., 1993, An interaction of beta-amyloid with aluminum in vitro. Febs Lett. 324: 293–295.PubMedCrossRefGoogle Scholar
  18. Finckh, U., van Hadeln, K., Muller-Thomsen, T., Alberici, A., Binetti, G., Hock, C, Nitsch, R.M., Stoppe, G., Reiss, J. and Gal, A., 2003, Association of late-onset Alzheimer disease with a genotype of PLAU, the gene encoding urokinase-type plasminogen activator on chromosome 10q22.2. Neurogenetics 4: 213–217.PubMedCrossRefGoogle Scholar
  19. Hardy, J. A. and Higgins, G. A., 1992, Alzheimers-disease — the amyloid cascade hypothesis. Science 256: 184–185.PubMedCrossRefGoogle Scholar
  20. Harris, W. R., Berthon, G., Day, J. P., Exley, C, Flaten, T. P., Forbes, W. F., Kiss, T., Orvig, C. and Zatta, P. F., 1996, Speciation of aluminum in biological systems. J. Toxicol. Environ. Health 48: 543–568.PubMedCrossRefGoogle Scholar
  21. House, E., Collingwood, J., Khan, A., Korchazhkina, O., Berthon, G and Exley, C., 2004, Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Aβ42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease. J. Alzh. Dis. 6: 291–301.Google Scholar
  22. Koike, H., Tomioka, S., Sorimachi, H., Saido, T.C., Maruyama, K., Okuyama, A., Fujisawa-Sehara, A., Ohno, S., Suzuki, K and Ishiura, S., 1999, Membrane-anchored metalloprotease MDC9 has an α-secretase activity responsible for processing the amyloid precursor protein. Biochem. J. 343: 371–375.PubMedCrossRefGoogle Scholar
  23. Korchazhkina, O. V., Ashcroft, A.E., Kiss, T., and Exley, C, 2002, The degradation of Aβ25–35 by the serine protease plasmin is inhibited by aluminium. J. Alzh. Dis. 4: 357–367.Google Scholar
  24. Kuroda, Y., Kobayashi, K., Ichikawa, M., Kawahara, M. and Muramoto, K., 1995, Application of long-term cultured neurons in aging and neurological research — aluminum neurotoxicity, synaptic degeneration and Alzheimers-disease. Gerontology 41: 2–6.PubMedCrossRefGoogle Scholar
  25. Kuroda, H., Cui, J.G., Bazan, N.G. and Lukiw, W.J., 2003, Aluminum induces NF — kB signaling and inflammatory gene expression in human neural cells in primary culture: implications for neurodegenerative disease. Program No. 669.9. 2003 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience.Google Scholar
  26. Landsberg, J. P., McDonald, B and Watt, F., 1992, Absence of aluminium in neuritic plaque cores in Alzheimer’s disease. Nature 360: 65–68.PubMedCrossRefGoogle Scholar
  27. Ledesma, M. D., Da Silva, J. S., Crassaerts, K., Delacourte, A., De Strooper, B. and Dotti, C. G., 2000, Brain plasmin enhances APP alpha-cleavage and A beta degradation and is reduced in Alzheimer’s disease brains. Embo Rep. 1: 530–535.PubMedGoogle Scholar
  28. Levine, H., 1993, Thioflavine-T interaction with synthetic Alzheimers-disease beta-amyloid peptides — detection of amyloid aggregation in solution. Proc. Sci. 2: 404–410.Google Scholar
  29. Miu, A. C, Andreescu, C. E., Vasiu, R. and Olteanu, A. I., 2003, A behavioral and histological study of the effects of long-term exposure of adult rats to aluminum. Int. J. Neurosci. 113: 1197–1211.PubMedCrossRefGoogle Scholar
  30. Moore, P. B., Day, J. P., Taylor, G. A., Ferrier, I. N., Fifield, L. K. and Edwardson, J. A., 2000, Absorption of aluminium-26 in Alzheimer’s disease, measured using accelerator mass spectrometry. Dement. Geriat. Cogn. Disord. 11: 66–69.CrossRefGoogle Scholar
  31. Moore, P. B., Edwardson, J. A., Ferrier, I. N., Taylor, G. A., Lett, D., Tyrer, S. P., Day, J. P., King, S. J. and Lilley, J. S., 1997, Gastrointestinal absorption of aluminum is increased in Down’s syndrome. Biol. Psychiat. 41: 488–492.PubMedCrossRefGoogle Scholar
  32. Oka, J. I., Suzuki, E., Goto, N. and Kameyama, T., 1999, Endogenous GLP-1 modulates hipocampal activity in beta-amyloid protein-treated rats. Neuroreport 10: 2961–2964.PubMedCrossRefGoogle Scholar
  33. Oshiro, S., 2002, A new effect of aluminum on iron metabolism in mammalian cells. Struct. Bond. 104: 59–77.CrossRefGoogle Scholar
  34. Oshiro, S., Kawahara, M., Mika, S., Muramoto, K., Kobayashi, K., Ishige, R., Nozawa, K., Hori, M., Yung, C, Kitajima, S. and Kuroda, Y., 1998, Aluminum taken up by transferrin-independent iron uptake affects the iron metabolism in rat cortical cells. J. Biochem. 123: 42–46.PubMedGoogle Scholar
  35. Pratico, D., Uryu, K., Sung, S., Tang, S., Trojanowski, J. Q. and Lee, V. M.-Y., 2002, Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. FASEB J. 16: 1138–1140.PubMedGoogle Scholar
  36. Rogers, J. T., Randall, J. D., Cahill, C. M., Eder, P. S., Huang, X. D., Gunshin, H., Leiter, L., McPhee, J., Sarang, S. S., Utsuki, T., Greig, N. H., Lahiri, D. K., Tanzi, R. E., Bush, A. I., Giordano, T. and Gullans, S. R., 2002, An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J. Biol. Chem. 277: 45518–45528.PubMedCrossRefGoogle Scholar
  37. Selkoe, D.J., Shankar, G.M., Fadeeva, J.V. and Walsh, D.M., 2003, Modulation and further characterisation of cell-derived Aβ oligomers. Program No. 667.7. 2003 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience.Google Scholar
  38. Sengupta, P., Garai, K., Sahoo, B., Shi, Y., Callaway, D. J. E. and Maiti, S., 2003, The amyloid beta peptide (A beta(1-40)) is thermodynamically soluble at physiological concentrations. Biochemistry 42: 10506–10513.PubMedCrossRefGoogle Scholar
  39. Tucker, H. M., Kihiko, M., Caldwell, J. N., Wright, S., Kawarabayashi, T., Price, D., Walker, D., Scheff, S., McGillis, J. P., Rydel, R. E. and Estus, S., 2000, The plasmin system is induced by and degrades amyloid-beta aggregates. J. Neurosci. 20: 3937–3946.PubMedGoogle Scholar
  40. Varner, J. A., Jensen, K. F., Horvath, W. and Isaacson, R. L., 1998, Chronic administration of aluminum-fluoride or sodium-fluoride to rats in drinking water: alterations in neuronal and cerebrovascular integrity. Brain Res. 784: 284–298.PubMedCrossRefGoogle Scholar
  41. Ward, R. J., Zhang, Y. and Crichton, R. R., 2001, Aluminium toxicity and iron homeostasis. J. Inorg. Biochem. 87: 9–14.PubMedCrossRefGoogle Scholar
  42. Yamanaka, K., Minato, N. and Iwai, K., 1999, Stabilization of iron regulatory protein 2, IRP2, by aluminum. Febs Lett. 462: 216–220.PubMedCrossRefGoogle Scholar
  43. Zhang, Z. J., Qian, Y. H., Hu, H. T., Yang, H. and Yang, G. D., 2003, The herbal medicine Dipsacus asper Wall extract reduces the cognitive deficits and overexpression of beta-amyioid protein induced by aluminum exposure. Life Sci. 73: 2443–2454.PubMedCrossRefGoogle Scholar
  44. Zou, J., Kajita, K. and Sugimoto, N., 2001, Cu2+ inhibits the aggregation of amyloid beta-peptide(1-42) in vitro. Ange. Chem.-Int. Edit. 40: 2274–2277.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Christopher Exley
    • 1
  1. 1.Birchall Centre for Inorganic Chemistry and Materials ScienceKeele UniversityStaffordshireUK

Personalised recommendations