Advertisement

Integrated Direct-Modulation Based Quantum Cryptography System

  • Johann Cussey
  • Matthieu Bloch
  • Jean-Marc Merolla
  • Steven. W McLaughlin
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 164)

Abstract

We report a new quantum key distribution scheme using direct-modulation method associated with single sideband detection (SSB). Experiments were carried out at 850 nm using standard electronic and optical components.

Keywords

Quantum Cryptography Voltage Control Oscillator Quantum Signal Synchronisation Signal Single Photon Counting Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    C.H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, “Experimental quantum cryptography”, Journal of Cryptology, 5 (1992), 3.CrossRefGoogle Scholar
  2. [2]
    A. Muller, H. Zbinden and N. Gisin, “Quantum cryptography over 23 km in installed under-lake telecom fibre”, Europhysics Letters, 33 (1996), 335–339.CrossRefGoogle Scholar
  3. [3]
    P.D. Townsend, J.G. Rarity and P.R. Tapster, “Single photon interference in 10 km long optical fibre interferometer”, Electronics Letters, 29 (1993), 634–635.Google Scholar
  4. [4]
    R.J. Hughes, G.L. Morgan and C.G. Peterson, “Quantum key distribution over a 48-km optical fiber network,” Journal of Modern Optics, 47 (2000), 533–547.MathSciNetCrossRefGoogle Scholar
  5. [5]
    H. Kosaka, A. Tomita, Y. Nambu, T. Kimura and K. Nakamura, “Single-photon interference experiment over 100 Km for quantum cryptography system using balanced gated-mode photon detector”, Electronics letters, 39 (2003), 1199–1201.CrossRefGoogle Scholar
  6. [6]
    C. Kurtsiefer, P. Zarda, M. Halder, P.M. Gorman, P.R. Tapster, J.G. Rarity and H. Weinfurter, “Long distance free-space quantum cryptography”, Proceedings of the SPIE, 4917 (2002), 25–31.CrossRefGoogle Scholar
  7. [7]
    O.L. Guerreau, J.-M. Merolla, A. Soujaeff, F. Patois, J.-P. Goedgebeur, F.J. Malassenet, “Long-distance QKD transmission using single-sideband detection scheme With WDM synchronization”, Journal of Selected Topics in Quantum Electronics, 9 (2003), 1533–1540.CrossRefGoogle Scholar
  8. [8]
    P. Moller, C. Schori, J.L. Sorensen, L. Salvail, I. Damgard and E. Polzik, “Experimental quantum key distribution with proven security against realistic attacks”, Journal of Modern Optics, 48 (2001), 1921–1942.CrossRefGoogle Scholar
  9. [9]
    G. Gilbert and M. Hamrick, “Secrecy, Computational Loads and Rates in Practical Quantum Cryptography”, Algorithmica, 34 (2002), 314.MathSciNetCrossRefGoogle Scholar
  10. [10]
    D. Gottesman and H.-K. Lo, “Proof of security of quantum key distribution with two-way classical communications”, IEEE Transactions on Information Theory, 49 (2003), 457.MathSciNetCrossRefGoogle Scholar
  11. [11]
    J.C. Bienfang, A.J. Gross, A. Mink, B.J. Hershman, A. Nakassis, X. Tang, R. Lu, D.H. Su, C.W. Clark, C.J. Williams, E.W. Hagley, J. Wen “Quantum key distribution with 1.25 Gbps clock synchronization”, Optics Express, 12 (2004), 2011–2016.CrossRefGoogle Scholar
  12. [12]
    A.V. Krishnamoorthy and D.A.B. Miller, “Scaling optoelectronic-VLSI circuit into the 21st century: a technologiy roadmap”, Journal of Selected Topics in Quantum Electronics, 2 (1996), 55–76.CrossRefGoogle Scholar

Copyright information

© International Federation for Information Processing 2005

Authors and Affiliations

  • Johann Cussey
    • 1
  • Matthieu Bloch
    • 2
  • Jean-Marc Merolla
    • 1
  • Steven. W McLaughlin
    • 2
  1. 1.GTL-CNRS Telecom UMR 6174MetzFrance
  2. 2.Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations