Advertisement

Choice, Ranking and Sorting in Fuzzy Multiple Criteria Decision Aid

  • Patrick Meyer
  • Marc Roubens
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 78)

Abstract

In this chapter we survey several approaches to derive a recommendation from some preference models for multiple criteria decision aid. Depending on the specificities of the decision problem, the recommendation can be a selection of the best alternatives, a ranking of these alternatives or a sorting. We detail a sorting procedure for the assignment of alternatives to graded classes when the available information is given by interacting points of view and a subset of prototypic alternatives whose assignment is given beforehand. A software dedicated to that approach (TOMASO) is briefly presented. Finally we define the concepts of good and bad choices based on dominant and absorbant kernels in the valued digraph that corresponds to an ordinal valued outranking relation. Aggregation with fuzzy environment, fuzzy choice, ordinal ordered sorting, choquet integral, TOMASO.

Keyword

Aggregation with fuzzy environment fuzzy choice ordinal ordered sorting choquet integral TOMASO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Bisdorff and M. Roubens. On defining and computing fuzzy kernels and 1-valued simple graphs. In D. Ruan, P. D’Hondt, P. Govaerts, and E. Kerre, editors, Intelligent Systems and Soft Computing for Nuclear Science and Industry, pages 113–122. World Scientific, Singapore, 1996.Google Scholar
  2. [2]
    D. Botteldooren and A. Verkeyn. Fuzzy models for accumulation of reported community noise annoyance from combined sources. Journal of the Acoustical Society of America, 112:496–1508, 2002.CrossRefGoogle Scholar
  3. [3]
    J.P. Brans and P. Vincke. A preference ranking organization method. Management Science, 31:647–656, 1984.MathSciNetGoogle Scholar
  4. [4]
    G. Choquet. Theory of capacities. Annales de l’Institut Fourier, 5:131–295, 1953.MathSciNetGoogle Scholar
  5. [5]
    D. Dubois and H. Prade. Weighted minimum and maximum in fuzzy set theory. Information Science, 39:205–210, 1986.CrossRefMathSciNetGoogle Scholar
  6. [6]
    J. Fodor, S.A. Orlovski, P. Perny, and M. Roubens. The use of fuzzy preference models in multiple criteria: Choice, ranking and sorting. In D. Dubois and H. Prade, editors, Operations Research and Statistics, volume 5 of Handbooks of Fuzzy Sets, pages 69–101. Kluwer Academic Publishers, Dordrecht, Boston, London, 1998. Chapter 3.Google Scholar
  7. [7]
    J. Fodor, P. Perny, and M. Roubens. Decision making and optimization. In E. Ruspini, P. Bonissone, and W. Pedrycz, editors, Handbook of Fuzzy Computation, pages F.5.1:1–14. Institute of Physics Publication and Oxford University Press, Bristol, 1998. Chapter 5.1.Google Scholar
  8. [8]
    M. Grabisch. κ-order additive discrete fuzzy measure and their representation. Fuzzy Sets and Systems, 92:167–189, 1997.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    M. Grabisch and M. Roubens. Application of the Choquet integral in multicriteria decision making. In M. Grabisch, T. Murofushi, and M. Sugeno, editors, Fuzzy Measures and Integrals, pages 348–374. Physica Verlag, Heidelberg, 2000.Google Scholar
  10. [10]
    S. Greco, B. Matarazzo, and R. Slowinski. Conjoint measurement and rough set approach for multicriteria sorting problems in presence of ordinal criteria. In A. Colorni, M. Paruccini, and B. Roy, editors, A-MCD-A: Aide Multicritère à la Décision (Multiple Criteria Decision Aiding), pages 17–144. Joint Research Centre, Ispra, 2001. European Commission Report, EUR 19808 EN.Google Scholar
  11. [11]
    L. Kitainik. Fuzzy Decision Procedures with Binary Relations. Towards a Unified Theory. Kluwer Academic Publishers, Dordrecht, 1993.Google Scholar
  12. [12]
    J.-L. Marichal. Aggregation Operators for Multicriteria Decision Aid. PhD thesis, Institute of Mathematics, University of Liège, Liège, Belgium, 1998.Google Scholar
  13. [13]
    J.-L. Marichal. An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria. IEEE Transactions on Fuzzy Systems, 8:800–807, 2000.CrossRefMathSciNetGoogle Scholar
  14. [14]
    J.-L. Marichal. Behavioral analysis of aggregation in multicriteria decision aid. In J. Fodor, B. De Baets, and P. Perny, editors, Preferences and Decisions under Incomplete Knowledge, volume 51 of Studies in Fuzziness and Soft Computing, pages 153–178. Physica Verlag, Heidelberg, 2000.Google Scholar
  15. [15]
    J.-L. Marichal. Aggregation of interacting criteria by means of the discrete Choquet integral. In T. Calvo, G. Mayor, and R. Mesiar, editors, Aggregation Operators: New Trends and Applications, volume 97 of Studies in Fuzziness and Soft Computing, pages 224–244. Physica Verlag, Heidelberg, 2002.Google Scholar
  16. [16]
    J.-L. Marichal and M. Roubens. On a sorting procedure in the presence of qualitative interacting points of view. In J. Chojean and J. Leski, editors, Fuzzy Sets and their Applications, pages 217–230. Silesian University Press, Gliwice, 2001.Google Scholar
  17. [17]
    L.Y. Maystre, J. Pictet, and J. Simos. Mèthodes Multicritères ELECTRE. Presses polytechniques et universitaires romandes, Lausanne, 1994.Google Scholar
  18. [18]
    R. Mesiar. Generalizations of additive discrete fuzzy measures. Fuzzy Sets and Systems, 102:423–428, 1999.zbMATHMathSciNetGoogle Scholar
  19. [19]
    T. Murofushi and S. Soneda. Techniques for reading fuzzy measures (III): Interaction index. In 9th Fuzzy System Symposium, May 19–21 1993, Sapporo, Japan, pages 693–696, 1993. In Japanese.Google Scholar
  20. [20]
    S.V. Ovchinnikov and M. Roubens. On strict preference relations. Fuzzy Sets and Systems, 43:319–326, 1991.MathSciNetGoogle Scholar
  21. [21]
    G. Owen. Multilinear extensions of games. Management Science, 18:64–79, 1972.MathSciNetGoogle Scholar
  22. [22]
    P. Perny. Modélisation, Agrégation et Exploitation de Préférences Floues dans une Problématique de Rangement: Bases Axiomatiques, Procédures et Logiciel. PhD thesis, Université Paris-Dauphine, Paris 1992. LAFORIA document 9.Google Scholar
  23. [23]
    M. Roubens. Ordinal multiattribute sorting and ordering in the presence of interacting points of view. In D. Bouyssou, E. Jacquet-Lagrèze, P. Perny, R. Slowinski, Vanderpooten D., and P. Vincke, editors, Aiding Decisions with Multiple Criteria: Essays in Honour of Bernard Roy, pages 229–246. Kluwer Academic Publishers, Dordrecht, 2001.Google Scholar
  24. [24]
    M. Roubens and P. Vincke. Fuzzy preferences in an optimisation perspective. In J. Kacprzyk and S.A. Orlovski, editors, Optimization Models Using Fuzzy Sets and Possibility Theory, pages 77–90. D. Reidel, Dordrecht, Boston, Lancaster, Tokyo, 1987.Google Scholar
  25. [25]
    B. Roy. Classement et choix en présence de points de vue multiples (la méthode ELECTRE). Revue d’lnformation et de Recherche Opérationnelle, 8:57–75, 1968.Google Scholar
  26. [26]
    B. Roy. ELECTRE III: Un algorithme de classement fondé sur une représentation floue des préférences en présence de critères multiples. Cahiers du Centre d’Etudes en Recherche Opérationnelle, 20(1):3–24, 1978.zbMATHGoogle Scholar
  27. [27]
    B. Roy. Multicriteria Methodology for Decision Aiding. Kluwer Academic Publishers, Dordrecht, 1996.Google Scholar
  28. [28]
    B. Roy and P. Bertier. La méthode ELECTRE II. une application au media planning. In M. Ross, editor, Operational Research 72, pages 291–302. North Holland Publishing Co., North Holland 1973.Google Scholar
  29. [29]
    B. Roy and D. Bouyssou. Aide à la décision fondée sur une PAMC de type ELECTRE. Technical Report 69, Université Paris-Dauphine, Paris 1991. Document du LAMSADE.Google Scholar
  30. [30]
    B. Roy and J.-M. Skalka. ELECTRE IS — Aspects méthodologiques et guide d’utilisation. Technical Report 30, Université Paris-Dauphine, Paris 1985. Document du LAMSADE.Google Scholar
  31. [31]
    G. Schmidt and T. Ströhlein. Relations and Graphs — Discrete Mathematics for Computer Scientists. Springer Verlag, Berlin, Heidelberg, New York, 1999.Google Scholar
  32. [32]
    L.S. Shapley. A value for n-person games. In H.W. Kuhn and A.W. Tucker, editors, Contributions to the Theory of Games, Vol. II, volume 28 of Annals of Mathematics Studies, pages 307–317. Princeton University Press, Princeton, NJ, 1953.Google Scholar
  33. [33]
    A. Verkeyn, D. Botteldooren, B. De Baets, and G. De Tre. Modeling annoyance aggregation with Choquet integrals. In B. De Baets, editor, Proceedings of Eurofuse Workshop on Information Systems, September 23–25 2002, Varenna, Italy, pages 259–264, 2002.Google Scholar
  34. [34]
    A. Verkeyn, D. Botteldooren, D. De Baets, and G. De Tre. Sugeno integrals for the modelling of noise annoyance aggregation. In T. Bilgic and et al, editors, IFSA 2003, volume 2715 of Lecture Notes in Artificial Intelligence, pages 277–284. Springer Verlag, Berlin, 2003.Google Scholar
  35. [35]
    P. Wakker. Additive Representations of Preferences: A new Foundation of Decision Analysis. Kluwer Academic Publishers, Dordrecht, Boston, London, 1989.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Patrick Meyer
    • 1
  • Marc Roubens
    • 1
  1. 1.Department of MathematicsUniversity of LiègeLiègeBelgium

Personalised recommendations