Advertisement

Abstract

The purpose of this introductory part is to present an overall view of what MCDA is today. In Section 1, I will attempt to bring answers to questions such as: what is it reasonable to expect from MCDA? Why decision aiding is more often multicriteria than monocriterion? What are the main limitations to objectivity? Section 2 will be devoted to a presentation of the conceptual architecture that constitutes the main keys for analyzing and structuring problem situations. Decision aiding cannot and must not be envisaged jointly with a hypothesis of perfect knowledge. Different ways for apprehending the various sources of imperfect knowledge will be introduced in Section 3. A robustness analysis is necessary in most cases. The crucial question of how can we take into account all criteria comprehensively in order to compare potential actions to one another will be tackled in Section 4. In this introductory part, I will only present a general framework for positioning the main operational approaches that exist today. In Section 5, I will discuss some more philosophical aspects of MCDA. For providing some aid in a decision context, we have to choose among different paths which one seems to be the most appropriate, or how to combine some of them: the path of realism which leads to the quest for a discussion for discovering, the axiomatic path which is often associated with the quest of norms for prescribing, or the path of constructivism which goes hand in hand with the quest of working hypothesis for recommending.

Keywords

Multiple criteria decision aiding imperfect knowledge aggregation procedures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Aït Younes. Problèmes liés à la construction d’un pseudo-critère: Développements théoriques et implémentation informatique. PhD thesis, Universitébe Paris-Dauphine, 2001.Google Scholar
  2. [2]
    A. Aït Younes and B. Roy. Prise en compte d’une connaissance imparfaite à l’aide d’un pseudo-critëre: Procédure interactive de construction. Journal of Decision Systems, 2004. To appear.Google Scholar
  3. [3]
    J. Armstrong. Advocacy and objectivity in science. Management Science, 25(5):423–428, 1979.MathSciNetGoogle Scholar
  4. [4]
    R. Azibi. Construction des critères en aide à la décision: Aspects méthodologiques, techniques et pratiques. PhD thesis, Université Paris-Dauphine, 2003.Google Scholar
  5. [5]
    R. Azibi and D. Vanderpooten. Elaboration de critères agrégeant des conséquences dispersées: Deux exemples concrets. In A. Colorni, M. Paruccini, and R. Roy, editors, A-MCD-A: Multiple Criteria Decision Aiding, pages 13–30. Joint Research Center. The European Commission, Luxembourg, 2001.Google Scholar
  6. [6]
    R. Azibi and D. Vanderpooten. Construction of rule-based assignment models. European Journal of Operational Research, 138(2):274–293, 2002.CrossRefMathSciNetGoogle Scholar
  7. [7]
    R. Azibi and D. Vanderpooten. Aggregation of dispersed consequences for constructing criteria: the evaluation of flood risk reduction strategies. European Journal of Operational Research, 44:397–411, 2003.Google Scholar
  8. [8]
    C. Bana e Costa, editor. Readings in Multiple Criteria Decision Aid. Springer Verlag, Heidelberg, 1990.Google Scholar
  9. [9]
    C. Bana e Costa and M. Pirlot. Thoughts on the future of multicriteria field: Basic convictions and outline for general methodology. In J. Chímaco, editor, Multicriteria Analysis, pages 562–568. Springer Verlag, Berlin, 1997.Google Scholar
  10. [10]
    C. Bana e Costa, T. Stewart, and J.C. Vansnick. Multicriteria decision analysis: Some thoughts based on the tutorial and discussion sessions of ESIGMA meetings. European Journal of Operational Research, 99:28–37, 1997.CrossRefGoogle Scholar
  11. [11]
    C.A Bana e Costa. Structuration, construction et exploitation d’un modèle multicritère d’aide à la décision. PhD thesis, Instituto Superior Técnico, Lisboa, Portugal, 1992.Google Scholar
  12. [12]
    M. Banville, M. Landry, J-M. Martel, and C. Boulaire. A stakeholder approach to MCDA. Systems Research and Behavioral Science, 15:15–32, 1998.CrossRefGoogle Scholar
  13. [13]
    V. Belton and J. Pictet. Talking about the practice of MCDA. In D. Bouyssou, E. Jacquet-Lagrèze, P. Perny, R. Slowinski, D. Vanderpooten, and Ph. Vincke, editors, Aiding Decisions with Multiple Criteria: Essays in Honour of Bernard Roy, pages 71–88. Kluwer Academic Publishers, 2001.Google Scholar
  14. [14]
    P. Bertier and J. de Montgolfier. Comment choisir en tenant compte de points de vue non commensurables? Analyse et Prévision, XI:-521–548, 1971.Google Scholar
  15. [15]
    D. Bouyssou. Some remarks on the notion of compensation in MCDM. European Journal of Operational Research, 26:150–160, 1986.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    D. Bouyssou. Modelling inaccurate determination, uncertainty, imprecision using multiple criteria. In A. Lockett and G. Islei, editors, Improving Decision Making in Organisations, volume 335 of Lecture Notes in Economics and Mathematical Systems, pages 78–87. Springer Verlag, Berlin, 1989.Google Scholar
  17. [17]
    A. Chipperfield, J. Whidborne, and P. Fleming. Evolutionary algorithms and simulated annealing for MCDM. In T. Gal, T. Stewart, and T. Hanne, editors, Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory and Applications, pages 16.1–16.32. Kluwer Academic Publishers, Boston, 1999.Google Scholar
  18. [18]
    P. Czyzak and R. Slowinski. Possibilistic construction of fuzzy outranking relation for multiple-criteria ranking. Fuzzy Sets and Systems, 81(1):123–131, 1996.CrossRefMathSciNetGoogle Scholar
  19. [19]
    S. Damart. A note on the concept of knowledge management in decision aid activity. In DSI-Age 2002 (Decision Making and Decision Support in the Internet Age 2002), Cork, Ireland, July 4–7, 2002.Google Scholar
  20. [20]
    A. David. Decision-aid between tools and organisations. In D. Bouyssou, E. Jacquet-Lagrèze, P. Perny, R. Slowinski, D. Vanderpooten, and Ph. Vincke, editors, Aiding Decisions with Multiple Criteria: Essays in Honour of Bernard Roy, pages 45–69. Kluwer Academic Publishers, 2001.Google Scholar
  21. [21]
    J. de Montgolfier and P. Bertier. Approche Multicritère des Problèmes de Décision. Editions Hommes et Techniques, Paris, 1978.Google Scholar
  22. [22]
    D. Dubois. Modèles mathématiques de l’imprécis et de l’incertain en vue d’applications aux techniques d’aide à la décision. Mémoire d’habilitation, Université Paul Sabatier, Toulouse, 1983.Google Scholar
  23. [23]
    D. Dubois, J. Marichal, H. Prade, and M. Roubens. The use of the discrete Sugeno integral in decision-making: A survey. In A. Colorni, M. Paruccini, and B. Roy, editors, A-MCDA: Multiple Criteria Decision Aiding, pages 81–98. Joint Research Center. The European Commission, Luxembourg, 2001.Google Scholar
  24. [24]
    D. Dubois and H. Prade. Théorie des possibilités: Application à la représentation des connaissances en informatique. Masson, Paris, 1985.Google Scholar
  25. [25]
    M. Ehrgott and X. Gandibleux, editors. Multiple Criteria Optimization. State of the Art Annotated Bibliographic Surveys. Kluwer Academic Publishers, Dordrecht, 2002.Google Scholar
  26. [26]
    L. Escudero. Robust decision making as a decision making aid under uncertainty. In S. Rios, editor, Decision Theory and Decision Analysis: Trends and Challenges, pages 127–138. Kluwer Academic Publishers, Dordrecht, 1994.Google Scholar
  27. [27]
    H. Fargier and P. Perny. Modélisation des préférences par une règle de concordance généralisée. In A. Colorni, M. Paruccini, and B. Roy, editors, A-MCD-A: Multiple Criteria Decision Aiding, pages 99–116. Joint Research Center. The European Commission, Luxembourg, 2001.Google Scholar
  28. [28]
    J. Fodor and M. Roubens. Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht, 1994.Google Scholar
  29. [29]
    L. Gardiner and D. Vanderpooten. Interactive multiple criteria procedures: Some reflections. In J. Chìmaco, editor, Multicriteria Analysis, pages 290–301. Springer Verlag, Berlin, 1997.Google Scholar
  30. [30]
    J. Genard and M. Pirlot. Multi-criteria decision-aid in a philosophical perspective. In D. Bouyssou, E. Jacquet-Lagrèze, P. Perny, R. Slowinski, D. Vanderpooten, and Ph. Vincke, editors, Aiding Decisions with Multiple Criteria: Essays in Honour of Bernard Roy, pages 89–117. Kluwer Academic Publishers, Dordrecht, 2001.Google Scholar
  31. [31]
    S. Greco, B. Matarazzo, and R. Slowinski. The use of rough sets and fuzzy sets in MCDM. In T. Gal, T. Stewart, and T. Hanne, editors, Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, pages 14.1–14.59. Kluwer Academic Publishers, Dordrecht, 1999.Google Scholar
  32. [32]
    Groupe de Reflexion sur l’Economie des Transports Urbains (GRETU). Une étude économique a montré⋯ Mythes et réaltiés sur les études de transports. Editions Cujas, Paris, 1980.Google Scholar
  33. [33]
    S. Gupta and J. Rosenhead. Robustness in sequential investment decisions. Management Science, 15(2):18–29, 1972.Google Scholar
  34. [34]
    A. Hatchuel. Coopération et conception collective: Variété et crises des rapports de prescription. In G. De Terssac and E. Friedberg, editors, Coopération et Conception, pages 101–121. Octares Editions, 1996.Google Scholar
  35. [35]
    E. Jacquet-Lagrèze. Modélisation des préférences: Préordres, quasi-ordres et relations floues. Thèse de doctorat de 3e Cycle, Université Paris V René Decartes, 1975.Google Scholar
  36. [36]
    R. Keeney. Creativity in decision-making with value-focused thinking. Sloan Management Review, 35(4):33–41, 1994.Google Scholar
  37. [37]
    R. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and Value Tradeoffs. John Wiley & Sons, New York, 1976.Google Scholar
  38. [38]
    P. Kouvelis and G. Yu. Robust Discrete Optimization and its Applications. Kluwer Academic Publishers, Dordrecht, 1997.Google Scholar
  39. [39]
    R. Kruse, E. Schwecke, and J. Heinsohn, editors. Uncertainty and Vagueness in Knowledge Based Systems. Springer Verlag, Berlin, 1991.Google Scholar
  40. [40]
    M. Landry. A note on the concept of problem. Organization Studies, 16:315–343, 1995.Google Scholar
  41. [41]
    J. Martel and B. Roy. Analyse de la signifiance de diverses procédures d’agrégation multicritère. Annales du LAMSADE 1, Université Paris-Dauphine, 2002.Google Scholar
  42. [42]
    V. Mousseau. Problèmes liés à l’évaluation de l’importance relative des critères en aide multicritère à la décision: Réflexions théoriques, expérimentations et implémentations informatiques. PhD thesis, Université Paris-Dauphine, 1993.Google Scholar
  43. [43]
    P. Perny and J.Ch. Pomerol. Use of artificial intelligence in MCDM. In T. Gal, T. Stewart, and T. Hanne, editors, Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, pages 15:1–15:43. Kluwer Academic Publishers, Dordrecht, 1999.Google Scholar
  44. [44]
    P. Perny and B. Roy. The use of fuzzy outranking relations in preference modelling. Fuzzy Sets and Systems, 49:33–53, 1992.CrossRefMathSciNetGoogle Scholar
  45. [45]
    P. Perny and D. Vanderpooten. An interactive multiobjective procedure for selecting medium-term countermeasures after nuclear accidents. Journal of Multi-Criteria Decision Analysis, 7(1):48–60, 1998.CrossRefGoogle Scholar
  46. [46]
    J. Pomerol and S. Barba-Romero. Multicriterion Decision Making in Management. Kluwer Academic Publishers, Dordrecht, 2000.Google Scholar
  47. [47]
    J-C. Pomerol. La décision humaine: Reconnaissance plus raisonnement. In D. Bouyssou, D. Dubois, M. Pirlot, and H. Prade, editors, Concepts et Méthodes pour l’Aide è la Décision, Traité IC2, Information, Commande, Communication. Hermès, Paris, To appear 2004.Google Scholar
  48. [48]
    F Rauschmayer. How to consider ethics in MCDA? In A. Colorni, M. Paruccini, and B. Roy, editors, A-MCD-A: Multiple Criteria Decision Aiding, pages 273–280. Joint Research Center. The European Commission, Luxembourg, 2001.Google Scholar
  49. [49]
    J. Rosenhead. Rational Analysis of a Problematic World. John Wiley & Sons, New York, 1989. 2nd edition revised in 2001.Google Scholar
  50. [50]
    J. Rosenhead. Robustness analysis: Keeping your options open. In J. Rosenhead and J. Mingers, editors, Rational Analysis for a Problematic World Revisited: Problem Structuring Methods for Complexity, Uncertainty and Conflict, pages 181–207. John Wiley & Sons, Chichester, 2001.Google Scholar
  51. [51]
    J. Rosenhead. Robustness to the first degree. In J. Rosenhead and J. Mingers, editors, Rational Analysis for a Problematic World Revisited: Problem Structuring Methods for Complexity, Uncertainty and Conflict, pages 209–223. John Wiley & Sons, Chichester, 2001.Google Scholar
  52. [52]
    B. Roy. Vers une méthodologie générale d’aide à la décision. Revue METRA, 14(3):459–497, 1975.Google Scholar
  53. [53]
    B. Roy. Partial preference analysis and decision-aid: The fuzzy outranking relation concept. In D. Bell, R. Keeney, and H. Raiffa, editors, Conflicting Objectives in Decisions, pages 40–75. John Wiley & Sons, New York, 1977.Google Scholar
  54. [54]
    B. Roy. Quelques remarques sur le concept d’indépendance dans l’aide à la décision multicritère. Foundations of Control Engineering, 8(3–4):183–191, 1983.MathSciNetGoogle Scholar
  55. [55]
    B. Roy. Méthodologie Multicritère d’aide à la Décision. Economica, Paris, 1985.Google Scholar
  56. [56]
    B. Roy. Des critères multiples en recherche opérationnelle: Pourquoi? In G. Rand, editor, Operational Research’ 87, pages 829–842. North-Holland, Amsterdam, 1988.Google Scholar
  57. [57]
    B. Roy. Main sources of inaccurate determination, uncertainty and imprecision. Mathematical and Computer Modelling, 12(10–11): 1245–1254, 1989.CrossRefGoogle Scholar
  58. [58]
    B. Roy. Decision science or decision aid science? European Journal of Operational Research, 66:184–203, 1993.CrossRefGoogle Scholar
  59. [59]
    B. Roy. On operational research and decision aid. European Journal of Operational Research, 73:23–26, 1994.CrossRefGoogle Scholar
  60. [60]
    B. Roy. Les logiques compensatoires et les autres. Note de Recherche du LAMSADE 16, Université Paris-Dauphine, France, 1996.Google Scholar
  61. [61]
    B. Roy. Multicriteria Methodology for Decision Aiding, volume 12 of Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht, 1996.Google Scholar
  62. [62]
    B. Roy. Une lacune en RO-AD: Les conclusions robustes. Cahier du LAMSADE 144, Université Paris-Dauphine, France, 1997.Google Scholar
  63. [63]
    B. Roy. A missing link in OR-DA, robustness analysis. Foundations of Computing and Decision Sciences, 23(3): 141–160, 1998.zbMATHGoogle Scholar
  64. [64]
    B. Roy. Decision-aiding today: What should we expect? In T. Gal, T. Stewart, and T. Hanne, editors, Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, pages 1.1–1.35. Kluwer Academic Publishers, Boston, 1999.Google Scholar
  65. [65]
    B. Roy. A propos de robustesse en recherche opérationnelle et aide à la décision. In J.Ch. Billaut, A. Moukrim, and E. Sanlaville, editors, Flexibilité et Robustesse en Ordonnancement. Hermès, Paris, To appear 2004.Google Scholar
  66. [66]
    B. Roy. Robustesse de quoi et vis-à-vis de quoi mais aussi robustesse pourquoi en aide à la décision? In C. Henggeler-Antunes, J. Figueira, and J. Clímaco, editors, Proceedings of 56th Meeting of the European Working Group Multiple Criteria Decision Aiding, Coimbra, Portugal, 3–5 October 2002. CCRC, Coimbra, Portugal, To appear 2004.Google Scholar
  67. [67]
    B. Roy and D. Bouyssou. Aide Multicritère à la Décision: Méthodes et Cas. Economica, Paris, 1993.Google Scholar
  68. [68]
    B. Roy and S. Damart. L’analyse coûts-avantages, outil de concertation et de légitimation? METROPOLIS, 108–109:7–16, 2002.Google Scholar
  69. [69]
    B. Roy and V. Mousseau. A theoretical framework for analysing the notion of relative importance of criteria. Journal of Multi Criteria Decision Analysis, 5:145–159, 1996.Google Scholar
  70. [70]
    B. Roy and Ph. Vincke. Systèmes relationnels de préférences en présence de critères multiples avec seuils. Cahiers du CERO, 22(1):23–38, 1980.MathSciNetGoogle Scholar
  71. [71]
    B. Roy and Ph. Vincke. Relational systems of preference with one or more pseudo-criteria: Some new concepts and results. Management Science, 30(11):1323–1335, 1984.MathSciNetGoogle Scholar
  72. [72]
    B. Roy and Ph. Vincke. Pseudo-orders: Definition, properties and numerical representation. Mathematical Social Sciences, 14(3):263–274, 1987.CrossRefMathSciNetGoogle Scholar
  73. [73]
    B. Roy and Ph. Vincke. The case of the vanishing optimum revisited again. Journal of Multi-Criteria Decision Analysis, 7:351, 1998.CrossRefGoogle Scholar
  74. [74]
    A. Schärlig. The case of the vanishing optimum. Journal of Multi-Criteria Decision Analysis, 5:160–164, 1996.Google Scholar
  75. [75]
    R. Slowinski, editor. Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory. Kluwer Academic Publishers, Dordrecht, 1992.Google Scholar
  76. [76]
    R. Slowinski and J. Teghem, editors. Stochastic versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty. Kluwer Academic Publishers, Dordrecht, 1990.Google Scholar
  77. [77]
    T. Stewart. Concepts of interactive programming. In T. Gal, T. Stewart, and T. Hanne, editors, Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, pages 10.1–10.28. Kluwer Academic Publishers, Boston, 1999.Google Scholar
  78. [78]
    T. Tanino. Sensitivity analysis in multicriteria decision making. In T. Gal, T. Stewart, and T. Hanne, editors, Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, pages 7.1–7.29. Kluwer Academic Publishers, Boston, 1999.Google Scholar
  79. [79]
    A. Tsoukiàs. Sur la généralisation des concepts de concordance et discordance en aide multicritère à la décision. Mémoire d’habilitation, Université Paris Dauphine, 1997. Appeared also as Document du LAMSADE 117.Google Scholar
  80. [80]
    A. Tsoukiàs and Ph. Vincke. A new axiomatic foundation of partial comparability. Theory and Decision, 39:79–114, 1995.MathSciNetGoogle Scholar
  81. [81]
    D. Vanderpooten. The interactive approach in MCDA: A technical framework and some basic conceptions. Mathematical and Computer Modelling, 12:1213–1220, 1989.Google Scholar
  82. [82]
    D. Vanderpooten. The use of preference information in multiple criteria interactive procedures. In A.G Lockett and G. Islei, editors, Improving Decision Making in Organisations, pages 390–399. Springer Verlag, Berlin, 1989.Google Scholar
  83. [83]
    D. Vanderpooten. Modelling in decision aiding. In D. Bouyssou, E. Jacquet-Lagrèze, P. Perny, R. Slowinski, D. Vanderpooten, and Ph. Vincke, editors, Aiding Decisions with Multiple Criteria: Essays in Honour of Bernard Roy, pages 195–210. Kluwer Academic Publishers, Dordrecht, 2001.Google Scholar
  84. [84]
    Ph. Vincke. Multicriteria Decision-Aid. John Wiley & Sons, Chichester, 1992.Google Scholar
  85. [85]
    Ph. Vincke. Robust and neutral methods for aggregating preferences into an outranking relation. European Journal of Operational Research, 112(2):405–412, 1999.CrossRefzbMATHMathSciNetGoogle Scholar
  86. [86]
    Ph. Vincke. Robust solutions and methods in decision-aid. Journal of Multi-Criteria Decision Analysis, 8(3):181–187, 1999.CrossRefzbMATHMathSciNetGoogle Scholar
  87. [87]
    Ph. Vincke. Preferences and numbers. In A. Colorni, M. Paruccini, and B. Roy, editors, A-MCD-A: Multiple Criteria Decision Aiding, pages 343–354. Joint Research Center. The European Commission, Luxembourg, 2001.Google Scholar
  88. [88]
    A. Wierzbicki. On the role of intuition in decision making and some ways of multicriteria aid of intuition. Journal of Multi-Criteria Decision Analysis, 6(2):65–76, 1997.CrossRefzbMATHGoogle Scholar
  89. [89]
    A. Wierzbicki. Reference point approaches. In T. Gal, T. Stewart, and T. Hanne, editors, Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, pages 9.1–9.39. Kluwer Academic Publishers, Boston, 1999.Google Scholar
  90. [90]
    A.P. Wierzbicki. The use of reference objectives in multiobjective optimisation. In Fandel G. and Gal T., editors, MCDM Theory and Application, volume 177 of Lecture Notes in Economics and Mathematical Systems, pages 468–486, Hagen, 1980. Springer Verlag, Berlin.Google Scholar
  91. [91]
    M. Zeleny. Multiple Criteria Decision Making. McGraw Hill, New York, 1982.Google Scholar
  92. [92]
    M. Zeleny, editor. MCDM: Past Decade and Future Trends, A Source Book of Multiple Criteria Decision Making. JAI Press, London, 1984.Google Scholar
  93. [93]
    S. Zionts. The case of the vanishing optimum revisited. Journal of Multi-Criteria Decision Analysis, 6:247, 1997.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Bernard Roy
    • 1
  1. 1.LAMSADE Université Paris-DauphineParis Cedex 16France

Personalised recommendations