Reduction of Metals and Nonessential Elements by Anaerobes

  • Larry L. Barton
  • Richard M. Plunkett
  • Bruce M. Thomson

Conclusion

We are at the discovery stage for determining the ability of various bacteria to reduce metals and nonessential compounds. Mechanisms for these reductions generally have not yet been established, and it is apparent that much is unknown. A number of questions pertaining to reduction are raised: Which elements and compounds are reduced at the cell surface? Why are some of the compounds not reduced at the cell surface but become reduced at the plasma membrane or in the cytoplasm? What is the nature of the nonenergetic reactions in the cytoplasm of the bacterial cell? What are the physiologic substrates for the cytochromes and which reactions occur because of substitution of chemicals due to similar structural features? Certainly, considerable flexibility and adaptability of electron flow is expected in bacteria, and many new strains are expected to be found that obtain energy from these chemical reductions. The natural gene flow over the years in the anaerobic ecosystems has produced microorganisms of conside rable physiologic diversity. These anaerobic organisms continue to provide numerous biochemical challenges in the areas of anaerobic reduction of metals, metalloids, and nonessential elements by microorganisms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdelouas A, Gong WL, Lutze W, et al. 2000. Using cytochrome c(3) to make selenium wires. Chem Mat 12:1510–2.CrossRefGoogle Scholar
  2. Afkar E, Fukumori Y. 1999. Purification and characterization of triheme cytochrome c7 from the metal-reducing bacterium, Geobacter metallireducens. FEMS Microbiol Lett 175:205–10.PubMedCrossRefGoogle Scholar
  3. Beliaev AS, Saffarini DA. 1998. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J Bacteriol 180:6292–7.PubMedGoogle Scholar
  4. Bisconti L, Pepi M, Mangani S, Baldi F. 1997. Reduction of vanadate to vanadyl by a strain of Saccharomyces cerevisiae. Biometals 10:239–46.CrossRefPubMedGoogle Scholar
  5. Blum JS, Bindi AB, Buzzelli J, et al. 1998. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two halophiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30.CrossRefGoogle Scholar
  6. Brookins DG. 1997. Eh-pH diagrams for geochemistry. Berlin: Springer-VerlagGoogle Scholar
  7. Caccavo F, Coates JD, Rossello-Mora RA, et al. 1996. Geobacter ferrireducens, a physiologically distinct dissimilatory Fe(III)-reducing bacterium. Arch Microbiol 165:3752–9.Google Scholar
  8. Caccavo F, Lonergan DJ, Lovley DR, et al. 1994. Geobacter sulfurreducens sp. Nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–9.PubMedGoogle Scholar
  9. Champine JE, Underhill B, Johnson JM, et al. 2000. Electron transfer in the dissimilatory iron-reducing bacterium Geobacter metallireducens. Anaerobe 6: 187–96.CrossRefGoogle Scholar
  10. Chen G, Ford TE, Clayton CR. 1998. Interaction of sulfate-reducing bacteria with molybdenum dissolved from sputter-deposited molybdenum thin films and pure molybdenum powder. J Colloidal Interface Sci 204:237–46.CrossRefGoogle Scholar
  11. Coates JD, Ellis DJ, Gaw CV, Lovley DR. 1999. Geothrix fermentans gen. nov., sp nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol 49:1615–22.PubMedCrossRefGoogle Scholar
  12. Councell TB, Lada ER, Lovley DR. 1997. Microbial reduction of iodate. Water Air Soil Pollution 100:99–106.CrossRefGoogle Scholar
  13. DeMoll-Decker H, Macy JM. 1993. The periplasmic nitrite reductase of Thauera selenatis may catalyze the reduction of selenite to elemental selenium. Arch Microbiol 160:241–7.Google Scholar
  14. Fauque G, LeGall J, Barton LL. 1991. Sulfate-reducing and sulfur-reducing bacteria. In: Shivley JM, Barton LL, editors. Variations in autotrophic life. New York: Academic Press. p 271–338.Google Scholar
  15. Francis AJ, Dodge CJ, Lu F, et al. 1994. XPS and XANES studies of uranium reduction by Clostridium sp. Environ Sci Technol 28:636–9.CrossRefGoogle Scholar
  16. Fredrickson JK, Kostandarithes HM, Li SW, et al. 2000. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66:2006–11.CrossRefPubMedGoogle Scholar
  17. Gorby YA, Caccovo F Jr, Bolton H. 1998. Microbial reduction of cobaltIII EDTA in the presence and absence of manganese(IV) oxide. Environ Sci Technol 32:244–50.CrossRefGoogle Scholar
  18. Herman DC, Frankenberger WT 1999. Bacterial reduction of perchlorate and nitrate in water. J Environ Qual 28:1018–24.CrossRefGoogle Scholar
  19. Kessi J, Ramuz M, Wehrli E, et al. 1999. Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65:4734–40.PubMedGoogle Scholar
  20. Kraft T, Macy JM. 1998. Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem. 255:647–53.CrossRefGoogle Scholar
  21. Laverman AM, Blum JS, Schaefer JK, et al. 1995. Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl Environ Microbiol 61:3556–61.PubMedGoogle Scholar
  22. Lloyd JR, Nolting H-F, Solé VA, et al. 1999. Reduction of technecium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flow through bioreactor. Appl Environ Microbiol 65:2691–6.PubMedGoogle Scholar
  23. Lloyd JR, Yong P, Macaskie LE. 1998. Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 64:4607–9.PubMedGoogle Scholar
  24. Lloyd JR, Yong P, Macaskie LE. 2000. Biological reduction and removal of Nb(V) by two microorganisms. Environ Sci Technol 34:1297–301.CrossRefGoogle Scholar
  25. Lojou E, Bianco P, Bruschi M. 1998a. Kinetic studies on the electron transfer between various c-type cytochromes and iron (III) using a voltametric approach. Electrochim Acta 43:2005–13.CrossRefGoogle Scholar
  26. Lojou E, Bianco P, Bruschi M. 1998b. Kinetic studies on the electron transfer between bacterial c-type cytochromes and metal oxides. J Electroanal Chem 452:167–77.CrossRefGoogle Scholar
  27. Losi ME, Frankenberger WT. 1997. Reduction of selenium oxyanions by Enterobacter cloacae strain SLD1a-1: reduction of selenate to selenite. Environ Toxicol Chem 16:1851–8.CrossRefGoogle Scholar
  28. Lovley DR. 1995. Microbial reduction of iron, manganese, and other metals. Adv Agr 54:175–231.CrossRefGoogle Scholar
  29. Lovley DR. 2000. Fe(III) and Mn(IV) reduction. In: Lovley DR, editor. Environmental microbe-metal interactions. Washington, DC: ASM Press. p 3–30.Google Scholar
  30. Lovley DR, Phillips EJP. 1994. Reduction of chromate by Desulfovibrio vulgaris and its c 3 cytochrome. Appl Environ Microbiol 60:726–8.PubMedGoogle Scholar
  31. Lovley DR, Giovannoni SJ, White DC, et al. 1993a. Geobacter metallireducens gen nov sp nov, a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–44.CrossRefPubMedGoogle Scholar
  32. Lovley DR, Phillips EJP, Gorby YA, Landa E. 1991. Microbial reduction of uranium. Nature 350:413–6.CrossRefADSGoogle Scholar
  33. Lovley DR, Roden EE, Phillips EJP, Woodward JC. 1993b. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geol 113:41–53.CrossRefGoogle Scholar
  34. Lovley DR, Widman PK, Woodward JC, Phillips EJP. 1993c. Reduction of uranium by cytrochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59:3572–6.PubMedGoogle Scholar
  35. Macy JM, Santini JM, Pauling BV, et al. 2000. Two new arsenate/sulfate-reducing bacteria: mechanism of arsenate reduction. Arch Microbiol 173:49–57.CrossRefPubMedGoogle Scholar
  36. Malmqvist A, Welander T. 1992. Anaerobic removal of chlorate form bleach effluents. Water Sci Technol 25:237–42.Google Scholar
  37. Nealson KH, Saffarini D. 1994. Iron and manganese in anaerobic respiration: Environmental significance, physiology and regulation. Annu Rev Microbiol 48:311–43.CrossRefPubMedGoogle Scholar
  38. Newman DK, Ahmann D, Morel FMM. 1998. A brief review of microbial arsenate reduction. Geomicrobiology 15:255–68.CrossRefGoogle Scholar
  39. Newman DK, Beveridge TJ, Morel FMM. 1997a. Precipitation of arsenic trisulfide by Desulfotomaculum aurigmentum. Appl Environ Microbiol 63:2022–8.PubMedGoogle Scholar
  40. Newman DK, Kennedy EK, Coats JD, et al. 1997b. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168:380–8.CrossRefPubMedGoogle Scholar
  41. Oremland RS, Blum JS, Culbertson CW, et al. 1994. Isolation, growth, and metabolism of an obligately anaerobically, selenate-respiring bacterium, strain SES-3. Appl Environ Microbiol 60:3011–9.PubMedGoogle Scholar
  42. Peck HD Jr. 1993. Bioenergetic strategies of sulfate-reducing bacteria. In: Odom JM, Singleton R Jr, editors. The sulfate-reducing bacteria: contemporary perspectives. New York: Springer-Verlag. p 41–76.Google Scholar
  43. Pietzsch K, Hard BC, Babel W 1999. A Desulfovibrio sp. capable of growing by reducing U(VI). J Basic Microbiol 39:365–72.CrossRefGoogle Scholar
  44. Rech SA, Macy JM. 1992. The terminal reductases for selenate and nitrate respiration in Thauera selenatis are two distinct enzymes. J Bacteriol 174:7316–20.PubMedGoogle Scholar
  45. Rikken GB, Kroon AGM, van Ginkel CG. 1996. Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation. Appl Microbiol Biotechnol 45:420–6.CrossRefGoogle Scholar
  46. Schröder I, Rech S, Kraft T, Macy JM. 1997. Purification and characterization of the selenate reductase form Thauera selenatis. J Biol Chem 272:23765–8.PubMedCrossRefGoogle Scholar
  47. Seeliger S, Cord-Ruwisch R, Schink B. 1998. A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as electron carrier to other acceptors or to partner bacteria. J Bacteriol 180:3686–91.PubMedGoogle Scholar
  48. Stolz JF, Oremland RS. 1999. Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–27.PubMedCrossRefGoogle Scholar
  49. Stolz JF, Ellis DJ, Blum JS, et al. 1999. Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the ε-Proteobacteria. Int J Syst Bacteriol 49:1177–80.PubMedCrossRefGoogle Scholar
  50. Stolz JF, Gugliuzza T, Blum JS, et al. 1997. Differential cytochrome content and reductase activity in Geospirillum barnesii strain SeS3. Arch Microbiol 167:1–5.CrossRefPubMedGoogle Scholar
  51. Stumm W, Morgan JJ. 1996. Aquatic chemistry. 3rd ed. New York: Wiley.Google Scholar
  52. Tebo BM, Obraztsova AY. 1998. Sulfate-reducing bacterium with Cr(VI), U(VI ), Mn(IV), Fe(III) as electron acceptors. FEMS Microbiol Lett 162:193–8.CrossRefGoogle Scholar
  53. Tomei FA, Barton LL, Lemanski CL, Zocco TG. 1992. Reduction of selenate and selenite to elemental selenium by Wolinella succinogenes. Can J Microbiol 38:1328–33.CrossRefGoogle Scholar
  54. Tomei FA, Barton LL, Lemanski CL, et al. 1995. Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J Indust Microbiol 14:329–36.CrossRefGoogle Scholar
  55. Tucker MD, Barton LL, Thomson BM. 1997. Reduction and immobilization of molybdenum by Desulfovibrio desulfuricans. J Environ Quality 26:1146–52.CrossRefGoogle Scholar
  56. Tucker MD, Barton LL, Thomson BM. 1998. Reduction of Cr, Mo, Se, and U by Desulfovibrio desulfuricans immobilized in polyacrylamide gels. J Ind Microbiol Biotechnol 20:13–19.PubMedCrossRefGoogle Scholar
  57. Venkateswaran K, Moser DP, Dollhopf ME, et al. 1999. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49:704–24.CrossRefGoogle Scholar
  58. Wagman DD, Evans WH, Parker VB, et al. 1982. The NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data 11:1–293.CrossRefGoogle Scholar
  59. Wang YT, Shen H. 1997. Modeling Cr(VI) reduction by pure bacterial cultures. Water Res 31:727–32.MathSciNetCrossRefGoogle Scholar
  60. Wolfolk CA, Whiteley HR. 1962. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyicus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J Bacteriol 84:647–58.Google Scholar
  61. Yanke LJ, Bryant RD, Laishley EJ. 1995. Hydrogenase of Clostridium pasteurianum functions as a novel selenite reductase. Anaerobe 1:61–7.CrossRefPubMedGoogle Scholar
  62. Yurkova NA, Lyalikova NN. 1991. New vanadate-reducing facultative chemolithotrophic bacteria. Microbiology 59:672–7.Google Scholar

Suggested Reading

  1. Langmuir D. 1997. Aqueous environmental geochemistry. Upper Saddle River, NJ: Prentice-HallGoogle Scholar
  2. Lyalikova NN, Khizhnyak TV. 1996. Reduction of heptavalent technetium by acidophilic bacteria of the genus Thiobacillus. Microbiology 65:468–73.Google Scholar
  3. Macy JM, Lawson S. 1993. Cell yield [Y(M)] of Thauera selenatis grown anaerobically with acetate plus selenate or nitrate. Arch Microbiol 160:295–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  • Larry L. Barton
  • Richard M. Plunkett
  • Bruce M. Thomson

There are no affiliations available

Personalised recommendations