Abstract

Intersection graphs, in general, have been receiving attention in graph theory, for some time. For example, there are specific papers on this subject, dated some sixty years ago. On the other hand, two books, [14] and [56], appeared recently where intersection graphs play a central role. The book [30] also deals with various classes of intersection graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Akiyama, T. Hamada, and I. Yoshimura. On characterizations of the middle graph. TRU Mathematics, 11:35–39, 1975.MATHMathSciNetGoogle Scholar
  2. [2]
    M. O. Albertson and K. L. Collins. Duality and perfection for edges in cliques. Journal of Combinatorial Theory B, 36:298–309, 1984.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    R. Balakrishnan and P. Paulraja. Self-clique graphs and diameters of iterated clique graphs. Utilitas Mathematica, 29:263–268, 1986.MATHMathSciNetGoogle Scholar
  4. [4]
    E. Balas and C. S. Yu. On graphs with polynomially solvable maximum-weight clique problem. Networks, 19:247–253, 1989.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    H.-J. Bandelt and E. Prisner. Clique graphs and Helly graphs. Journal of Combinatorial Theory B, 51:34–45, 1991.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    C. Berge. Hypergraphes. Gauthier-Villars, Paris, 1987.MATHGoogle Scholar
  7. [7]
    A. Bondy, G. Durán, M. C. Lin, and J. L. Szwarcfiter. A sufficient condition for self-clique graphs (extended abstract). Electronic Notes in Discrete Mathematics, 2001. To appear.Google Scholar
  8. [8]
    C. F. Bornstein and J. L. Szwarcfiter. On clique convergent graphs. Graphs and Combinatorics, 11:213–220, 1995.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    C. F. Bornstein and J. L. Szwarcfiter. Iterated clique graphs with increasing diameters. Journal of Graph Theory, 28:147–154, 1998.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    C. F. Bornstein and J. L. Szwarcfiter. A characterization of clique graphs of rooted path graphs. In Y. Alavi, D. R. Lick, and A. Schwenck, editors, Proceedings of the 8th Quadriennial International Conference on Graph Theory, Algorithms, Combinatorics and Applications, pages 117–122. Western Michigan University, New Issues Press, 1999.Google Scholar
  11. [11]
    A. Brandstädt, V. D. Chepoi, and F. F. Dragan. Clique r-domination and clique r-packing problems on dually chordal graphs. SIAM Journal on Discrete Mathematics, 10:109–127, 1997.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    A. Brandstädt, V. D. Chepoi, F. F. Dragan, and V. I. Voloshin. Dually chordal graphs. SIAM Journal on Discrete Mathematics, 11:437–455, 1998.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    A. Brandstädt, V. D. Chepoi, and F. F. Dragan. The algorithmic use of hypertree structure and maximum neighbourhood orderings. Discrete Applied Mathematics, 82:43–77, 1998.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    A. Brandstädt, V. B. Le, and J. Spinrad. Graph Classes: A Survey, volume 3 of SIAM Monographs on Discrete Mathematics and ApplicationsSIAM, Philadelphia, 1999.CrossRefMATHGoogle Scholar
  15. [15]
    M. R. Cerioli. Grafos Clique de Arestas. PhD thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 1999.Google Scholar
  16. [16]
    M. R. Cerioli and J. L. Szwarcfiter. A characterization of edge clique graphs. Ars Combinatoria, 2001.To appear.Google Scholar
  17. [17]
    G. J. Chang, M. Farber, and Z. Tuza. Algorithmic aspects of neighbourhood numbers. SIAM Journal on Discrete Mathematics, 6:24–29, 1991.CrossRefMathSciNetGoogle Scholar
  18. [18]
    G. Chartrand, S. F. Kapoor, T. A. McKee, and F. Saba. Edge-clique graphs. Graphs and Combinatorics, 7:253–264, 1991.CrossRefMATHMathSciNetGoogle Scholar
  19. [19]
    B. L. Chen and K.-W. Lih. Diameters of iterated clique graphs of chordal graphs. Journal of Graph Theory, 14:391–396, 1990.CrossRefMATHMathSciNetGoogle Scholar
  20. [20]
    G. L. Chia. On self-clique graphs with given clique sizes. Discrete Mathematics, 212:185–189, 2000.CrossRefMATHMathSciNetGoogle Scholar
  21. [21]
    L. Chong-Keang and P. Yee-Hock. On graphs without multicliqual edges. Journal of Graph Theory, 5:443–451, 1981.CrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    E. J. Cockayne and S. T. Hedetnieme. Independence graphs. Congress us Numerantium, 10, 1974.Google Scholar
  23. [23]
    C. L. Deng and C. K. Lim. A class of clique-closed graphs. Discrete Mathematics, 127:131–137, 1994.CrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    M. C. Dourado, F. Protti, and J. L. Szwarefiter. The complexity of recognizing graphs with Helly defect one. In preparation.Google Scholar
  25. [25]
    F. F. Dragan. Centers of Graphs and the Helly Property PhD thesis, Moldava State University, Chisinău, Moldava, 1989. In russian.Google Scholar
  26. [26]
    G. Durán and M. C. Lin. Clique graphs of Helly circular-arc graphs. Ars Combinatoria, 2001. To appear.Google Scholar
  27. [27]
    P. Erdös, T. Gallai, and Z. Tuza. Covering the cliques of a graph with vertices. Discrete Mathematics, 108:279–289, 1992.CrossRefMATHMathSciNetGoogle Scholar
  28. [28]
    F. Escalante. Über iterierte Clique-Graphen. Abhandlungender Mathematischen Seminar der Universität Hamburg, 39:59–68, 1973.MathSciNetGoogle Scholar
  29. [29]
    F. Escalante and B. Toft. On clique-critical graphs. Journal of Combinatorial Theory B, 17:170–182, 1974.CrossRefMATHMathSciNetGoogle Scholar
  30. [30]
    M. C. Gohimbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.Google Scholar
  31. [31]
    V. Guruswami and C. P. Rangan. Algorithmic aspects of clique transversal and clique-independent sets. Discrete Applied Mathematics, 100:183–202, 2000.CrossRefMATHMathSciNetGoogle Scholar
  32. [32]
    M. Gutierrez. Tree-clique graphs. In J. L. Szwarcfiter, editor, Workshop Internacional de Combinatória, pages 7–26, Rio de Janeiro, 1996. Universidade Federal do Rio de Janeiro.Google Scholar
  33. [33]
    M. Gutierrez. Intersection graphs and clique application. Graphs and Combinatorics, 2001.To appear.Google Scholar
  34. [34]
    M. Gutierrez and J. Meidanis.Algebraic theory for the clique operator.Manuscript.Google Scholar
  35. [35]
    M. Gutierrez and J. Meidanis.Recognizing clique graphs of directed edge path graphs.Manuscript.Google Scholar
  36. [36]
    M. Gutierrez and J. Meidanis. On the clique operator. Lecture Notes in Computer Science, 1380:261–272, 1998. Proceedings of the 3rd Latin American Conference on Theoretical Informatics.CrossRefMathSciNetGoogle Scholar
  37. [37]
    M. Gutierrez and L. Oubiña. Minimum proper interval graphs. Discrete Mathematics, 142:77–85, 1995.CrossRefMATHMathSciNetGoogle Scholar
  38. [38]
    M. Gutierrez and R. Zucchello.Grafos ACI: Una generalización de los grafos de intervalos própios.Manuscript.Google Scholar
  39. [39]
    T. Hamada and I. Yoshimura. Traversability and connectivity of the middle graph of a graph. Discrete Mathematics, 14:247–255, 1976.CrossRefMATHMathSciNetGoogle Scholar
  40. [40]
    R. C. Hamelink. A partial characterization of clique graphs. Journal of Combinatorial Theory, 5:192–497, 1968.CrossRefMATHMathSciNetGoogle Scholar
  41. [41]
    S. Hazan and V. Neumann-Lara. Fixed points of posets and clique graphs. Order, 13:219–225, 1996.MATHMathSciNetGoogle Scholar
  42. [42]
    S. T. Hedetniemi and P. J. Slater. Line graphs of triangleless graphs and iterated clique graphs. Lecture Notes in Mathematics, 303:139–147, 1972.CrossRefMathSciNetGoogle Scholar
  43. [43]
    B. Hedman. Clique graphs of time graphs. Journal of Combinatorial Theory B, 37:270–278, 1984.CrossRefMATHMathSciNetGoogle Scholar
  44. [44]
    B. Hedman. Diameters of iterated clique graphs. Hadronic Journal, 9:273–276, 1986.MATHMathSciNetGoogle Scholar
  45. [45]
    B. Hedman. A polynomial algorithm for constructing the clique graph of a line graph. Discrete Applied Mathematics, 15:61–66, 1986.CrossRefMATHMathSciNetGoogle Scholar
  46. [46]
    P. Hell. Rétractions de Graphes. PhD thesis, Université de Montreal, Montreal, Canada, 1972.Google Scholar
  47. [47]
    M. Knor, L. Niepel, and L. Soltes. Centers in line graphs. Math. Slovaca, 43:11–20, 1993.MATHMathSciNetGoogle Scholar
  48. [48]
    F. Larrión and V. Neumann-Lara.On clique divergent graphs with linear growth. Manuscript.Google Scholar
  49. [49]
    F. Larrión and V. Neumann-Lara. A family of clique divergent graphs with linear growth. Graphs and Combinatorics, 13:263–266, 1997.MATHMathSciNetGoogle Scholar
  50. [50]
    F. Larrión and V. Neumann-Lara. Clique divergent graphs with unbounded sequence of diameters. Discrete Mathematics, 197–198:491–501, 1999.CrossRefGoogle Scholar
  51. [51]
    F. Larrión and V. Neumann-Lara. Locally C6 graphs are clique divergent. Discrete Mathematics, 2000. To appear.Google Scholar
  52. [52]
    F. Larrión, V. Neumann-Lara, and M. A. Pizaña.Whitney triangulations, local girth and iterated clique graphs.Manuscript.Google Scholar
  53. [53]
    F. Larrión, V. Neumann-Lara, and M. A. Pizaña. Clique divergent clockwork graphs and partial orders (extended abstract). Electronic Notes in Discrete Mathematics, 2001.To appear.Google Scholar
  54. [54]
    C. K. Lim. A result on iterated clique graphs. Journal of the Australian Mathematical Society A, 32:289–294, 1982.CrossRefMATHGoogle Scholar
  55. [55]
    C. L. Lucchesi, C. P. Mello, and J. L. Szwarcfiter. On clique-complete graphs. Discrete Mathematics, 183:247–254, 1998.CrossRefMATHMathSciNetGoogle Scholar
  56. [56]
    T. A. McKee and F. R. McMorris. Topics in Intersection Graph Theory, volume 2 of Monographs on Discrete Mathematics and Applications.SIAM, Philadelphia, 1999.CrossRefMATHGoogle Scholar
  57. [57]
    C. P. Mello. Sobre Grafos Clique-Completos. PhD thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 1992.Google Scholar
  58. [58]
    V. Neumann-Lara. On clique-divergent graphs. In Problèmes Combinatoires et Théorie des Graphes, pages 313–315, Orsay, France, 1978. Colloques Internationaux C.N.R.S. 260.Google Scholar
  59. [59]
    V. Neumann-Lara. Clique divergence in graphs. In Algebraic Methods in Graph Theory, volume 25, pages 563–569. Colloquia Mathematica Societatis János Bolyai, Szeged, Hungary, 1981.Google Scholar
  60. [60]
    V. Neumann-Lara. Clique divergence in graphs — some variations. Technical report, Instituto de Matematicas, Universidad Nacional Autonoma de Mexico, 1991.Google Scholar
  61. [61]
    L. Niepel, M. Knor, and L. Soltes. Distances in iterated line graphs. Ars Combinatoria, 43:193–202, 1996.MATHMathSciNetGoogle Scholar
  62. [62]
    R. Nowakowski and I. Rival. The smallest graph variety containing all paths. Discrete Mathematics, 43:223–234, 1983.CrossRefMATHMathSciNetGoogle Scholar
  63. [63]
    R. Nowakowski and P. Winkler. Vertex-to-vertex porsuit of a graph. Discrete Mathematics, 43:235–239, 1983.CrossRefMATHMathSciNetGoogle Scholar
  64. [64]
    C. Peyrat, D. F. Rall, and P. J. Slater. On iterated clique graphs with increasing diameters. Journal of Graph Theory, 10:167–171, 1986.CrossRefMATHMathSciNetGoogle Scholar
  65. [65]
    M. A. Pizaña.The icosahedron is clique-divergent. Manuscript.Google Scholar
  66. [66]
    M. A. Pizaña. Distances and diameters on iterated clique graphs (extended abstract). Electronic Notes in Discrete Mathematics, 2001.To appear.Google Scholar
  67. [67]
    E. Prisner. Convergence of iterated clique graphs. Discrete Mathematics, 103:199–207, 1992.CrossRefMATHMathSciNetGoogle Scholar
  68. [68]
    E. Prisner. Hereditary clique-Helly graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 14:216–220, 1993.MATHMathSciNetGoogle Scholar
  69. [69]
    E. Prisner. A common generalization of line graphs and clique graphs. Journal of Graph Theory, 18:301–313, 1994.CrossRefMATHMathSciNetGoogle Scholar
  70. [70]
    E. Prisner. Graph Dynamics. Pitman Research Notes in Mathematics 338, Longman, 1995.MATHGoogle Scholar
  71. [71]
    E. Prisner. Graphs with few cliques. In Y. Alavi and A. Schwenk, editors, Proceedings of the 7th Quadrennial International Conference on Graph Theory, Algorithms, Combinatorics ans Applications, pages 945–956. Western Michigam University, John Wiley and Sons, Inc., 1995.Google Scholar
  72. [72]
    E. Prisner and J. L. Szwarcfiter. Recognizing clique graphs of directed and rooted path graphs. Discrete Applied Mathematics, 94:321–328, 1999.CrossRefMATHMathSciNetGoogle Scholar
  73. [73]
    F. Protti. Classes de Grafos Clique Inversos. PhD thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 1998.Google Scholar
  74. [74]
    F. Protti and J. L. Szwarcfiter. Clique-inverse graphs of K3-free and K4-free graphs. Journal of Graph Theory, 35:257–272, 2000.CrossRefMATHMathSciNetGoogle Scholar
  75. [75]
    F. Protti and J. L. Szwarcfiter. On clique graphs of linear size. Congress us Numerantium, 2000.To appear.Google Scholar
  76. [76]
    F. Protti and J. L. Szwarcfiter. Clique-inverse graphs of bipartite graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 2001. To appear.Google Scholar
  77. [77]
    A. Quilliot. Homomorphismes, points fixes, retractions et jeux des poursuite dans les graphes, les ensembles ordonnés et les espaces metriques. PhD thesis, Université de Paris, Paris, France, 1983.Google Scholar
  78. [78]
    A. Quilliot. On the Helly property working as a compactness criterion on graphs. Journal of Combinatorial Theory A, 40:186–193, 1985.CrossRefMATHMathSciNetGoogle Scholar
  79. [79]
    F. S. Roberts and J. H. Spencer. A characterization of clique graphs. Journal of Combinatorial Theory B, 10:102–108, 1971.CrossRefMATHMathSciNetGoogle Scholar
  80. [80]
    E. Sampathkumar and H. B. Walikar. On the complete graph of a graph. Abstract Graph Theory Newsletter, 3, 1978.Google Scholar
  81. [81]
    M. Skowronska and M. M. Syslo. An algorithm to recognize a middle graph. Discrete Applied Mathematics, 7:201–208, 1984.CrossRefMATHMathSciNetGoogle Scholar
  82. [82]
    P. J. Slater. Irreducible point independence numbers and independence graphs. Congressus Numerantium, 10:647–660, 1974.MathSciNetGoogle Scholar
  83. [83]
    J. L. Szwarcfiter. Recognizing clique-Helly graphs. Ars Combinatoria, 45:29–32, 1997.MATHMathSciNetGoogle Scholar
  84. [84]
    J. L. Szwarcfiter and C. F. Bornstein. Clique graphs of chordal and path graphs. SIAM Journal on Discrete Mathematics, 7:331–336, 1994.CrossRefMATHMathSciNetGoogle Scholar
  85. [85]
    Z. Tuza. Covering all cliques of a graph. Discrete Mathematics, 86:117–126 1990.CrossRefMATHMathSciNetGoogle Scholar
  86. [86]
    W. D. Wallis and J. Wu. Squares, clique graphs and chordality. Journal of Graph Theory, 20:37–45, 1995.CrossRefMATHMathSciNetGoogle Scholar
  87. [87]
    W. D. Wallis and G. H. Zhang. On maximal clique irreducible graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 8:187–193, 1990.MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  • J. L. Szwarcfiter

There are no affiliations available

Personalised recommendations