Advertisement

Asynchronous Variational Integrators

  • A. Lew
  • M. Ortiz
Chapter

Abstract

We describe a class of asynchronous variational integrators (AVI) for nonlinear elastodynamics. The AVIs are characterized by the following distinguishing attributes: i) The algorithms permit the selection of independent time steps in each element, and the local time steps need not bear an integral relation to each other; ii) the algorithms derive from a spacetime form of a discrete version of Hamilton’s principle. As a consequence of this variational structure, the algorithms conserve local energy and momenta exactly, subject to solvability of the local time steps. Numerical tests reveal that, even when local energy balance is not enforced exactly, the global and local energy behavior of the AVIs is quite remarkable, a property which can probably be traced to the symplectic nature of the algorithm.

Keywords

Local Energy Lagrange Equation Local Time Step Angular Momentum Balance Discrete Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belytschko, T. [1981], Partitioned and adaptive algorithms for explicit time integration. In W. Wunderlich, E. Stein, and K.-J. Bathe, editors, Nonlinear Finite Element Analysis in Structural Mechanics, 572–584. Springer-Verlag.Google Scholar
  2. Belytschko, T. and R. Mullen [1976], Mesh partitions of explicit-implicit time integrators. In K.-J. Bathe, J.T. Oden, and W. Wunderlich, editors, Formulations and Computational Algorithms in Finite Element Analysis, 673–690. MIT Press, 1976.Google Scholar
  3. Bridges, T.J. and S. Reich [1999], Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. (preprint).Google Scholar
  4. Ge, Z. and J. E. Marsden [1988], Lie-Poisson integrators and Lie-Poisson Hamilton-Jacobi theory, Phys. Lett. A, 133, 134–139.CrossRefMathSciNetGoogle Scholar
  5. Gonzalez, O. [1996], Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6, 449–468.CrossRefzbMATHMathSciNetGoogle Scholar
  6. Gonzalez, O. and J.C. Simó [1996], On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry, Comp. Meth. Appl. Mech. Eng., 134, 197–222.CrossRefGoogle Scholar
  7. Gotay, M.J., J. Isenberg, J.E. Marsden and R. Montgomery [1997], Momentum maps and classical relativistic fields, Part I: Covariant field theory. (Unpublished). Available from http://www.cds.caltech.edu/~marsden.
  8. Kane, C., J. E. Marsden, and M. Ortiz [1999], Symplectic energy-momentum integrators, J. Math. Phys., 40, 3353–3371.CrossRefMathSciNetGoogle Scholar
  9. Kane, C., J. E. Marsden, M. Ortiz, and M. West [2000], Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems, Int. J. Num. Math. Eng., 49, 1295–1325.CrossRefMathSciNetGoogle Scholar
  10. Knuth, D. [1998], The art of computer programming, Addison-Wesley.Google Scholar
  11. Hughes, T. J. R. [1987] The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs, N.J..Google Scholar
  12. Hairer, E. and C. Lubich [2000], Long-time energy conservation of numerical methods for oscillatory differential equations, SIAM Journal on Numerical Analysis, 38, 414–441.CrossRefMathSciNetGoogle Scholar
  13. Hairer, E. and C. Lubich [2000], The life-span of backward error analysis for numerical integrators, Numerische Mathematik, 76, 441–462.CrossRefMathSciNetGoogle Scholar
  14. Lew, A., M. West, J. E. Marsden, and M. Ortiz, Asynchronous Variational Integrators, in preparation.Google Scholar
  15. Marsden, J. E. and T. J. R. Hughes [1994], Mathematical Foundations of Elasticity. Prentice Hall, 1983. Reprinted by Dover Publications, NY, 1994.Google Scholar
  16. Marsden, J. E., G. W. Patrick, and S. Shkoller [1998], Multisymplectic geometry, variational integrators and nonlinear PDEs, Comm. Math. Phys. 199, 351–395.CrossRefMathSciNetGoogle Scholar
  17. Marsden, J. E., S. Pekarsky, S. Shkoller, and M. West [2001], Variational methods, multisymplectic geometry and continuum mechanics, J. Geometry and Physics, 38, 253–284.CrossRefMathSciNetGoogle Scholar
  18. Marsden, J. E. and S. Shkoller [1999], Multisymplectic geometry, covariant Hamiltonians and water waves, Math. Proc. Camb. Phil. Soc., 125, 553–575.CrossRefMathSciNetGoogle Scholar
  19. Marsden, J. E. and M. West [2001], Discrete variational mechanics and variational integrators, Acta Numerica, 10, 357–514.CrossRefMathSciNetGoogle Scholar
  20. Neal, M. O. and T. Belytschko [1989], Explicit-explicit subcycling with noninteger time step ratios for structural dynamic systems, Computers & Structures, 6, 871–880.CrossRefMathSciNetGoogle Scholar
  21. Ortiz, M. [1986], A note on energy conservation and stability of nonlinear time stepping algorithms, Computers and Structures, 24, 167–168.CrossRefGoogle Scholar
  22. Reich, S. [1999], Backward error analysis for numerical integrators, SIAM Journal on Numerical Analysis, 36, 1549–1570.CrossRefzbMATHMathSciNetGoogle Scholar
  23. Simó, J. C., N. Tarnow, and K. K. Wong [1992], Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics, Comp. Meth. Appl. Mech. Eng., 100, 63–116.CrossRefGoogle Scholar
  24. Smolinski, P. and Y.-S. Wu [1998], An implicit multi-times tep integration method for structural dynamics problems, Computational Mechanics, 22, 337–343.CrossRefGoogle Scholar
  25. West, M. [2001], Variational Runge-Kutta methods for ODEs and PDEs. (preprint).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2002

Authors and Affiliations

  • A. Lew
  • M. Ortiz

There are no affiliations available

Personalised recommendations