Veterinary Medicines in the Environment

  • A. B. A. Boxall
  • L. A. Fogg
  • P. A. Blackwell
  • P. Blackwell
  • P. Kay
  • E. J. Pemberton
  • A. Croxford
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 180)


European Union Veterinary Medicine Fish Farm Environmental Risk Assessment Dung Beetle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ADAS (1997) Animal manure practices in the pig industry: survey report. Prepared by ADAS Market Research Team, Wolverhampton England.Google Scholar
  2. ADAS (1998) Animal manure practices in the dairy industry: survey report. Prepared by ADAS Market Research Team, Wolverhampton England.Google Scholar
  3. Al-Ahmad A, Daschner FD, Kummerer K (1999) Biodegradability of ceftiofam, ciprofloxacin, meropenem, penicillin G and sulfamethoxazole and inhibition of waste water bacteria. Arch Environ Contam Toxicol 37:158–163.PubMedCrossRefGoogle Scholar
  4. Alderman DJ, Hastings TS (1998) Antibiotic use in aquaculture. Int J Food Sci Technol 33:139–155.CrossRefGoogle Scholar
  5. Arcand-Hoy LD, Nimrod AC, Benson WH (1998) Endocrine-modulating substances in the environment: estrogenic effects of pharmaceutical products. Int J Toxicol 17:139–158.CrossRefGoogle Scholar
  6. Armstrong A, Philips K (1998) A strategic review of sheep dipping. Environment Agency R & D Tech Rep P170. Environment Agency, Bristol, England.Google Scholar
  7. Backhaus T, Grimme LH (1999) The toxicity of antibiotic agents to the luminescent bacterium Vibrio fischeri. Chemosphere 38:3291–3301.PubMedCrossRefGoogle Scholar
  8. Backhaus T, Scholze M, Grimme LH (2000) The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri. Aquat Toxicol 49: 49–61.PubMedCrossRefGoogle Scholar
  9. Backhaus T, Faust M, Junghans M, Scholze M, Grimme H (2001) Low algal toxicities of quinolones confirm their specific molecular mechanism of action. Presented at the SETAC Europe 11th Annual Meeting, Madrid, May 2001.Google Scholar
  10. Baguer AJ, Jensen J, Krogh PH (2000) Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere 40:751–758.PubMedCrossRefGoogle Scholar
  11. Bayer (1997) Baytril 10% injection: Safety Datasheet 345354/01. Bayer, Newbury, UK.Google Scholar
  12. Björklund HV, Bylund G (1991) Comparative pharmacokinetics and bioavailability of oxolinic acid and oxytetracycline in rainbow trout (Oncorhynchus mykiss). Xenobiotica 21:1511–1520.PubMedCrossRefGoogle Scholar
  13. Björklund HV, Bondestam J, Bylund G (1990) Residues of oxytetracycline in wild fish and sediments from fish farms. Aquaculture 86:359–367.CrossRefGoogle Scholar
  14. Björklund HV, Råbergh CMI, Bylund G (1991) Residues of oxolinic acid and oxytetracycline in fish and sediments from fish farms. Aquaculture 97:85–96.CrossRefGoogle Scholar
  15. Bloom RA, Matheson JC (1993) Environmental assessment of avermectins by the US Food and Drug Administration. Vet Parasitol 48:281–294.PubMedCrossRefGoogle Scholar
  16. Bohm VR (1996) Auswirkungen von ruckstanden von antiinfektiva in tierischen ausscheidungen auf die gullebehandlung und den boden. Dtsch Tierearztl Wochenschr 103:237–284.Google Scholar
  17. Bowen PDG (1995) Antiparasitic products. In: Animal Medicines: A User’s Guide: Transport, Storage and Disposal of Animal Medicines. National Office of Animal Health Ltd, Enfield, UK.Google Scholar
  18. Boxall ABA, Oakes D, Ripley P, Watts CD (2000) The application of predictive models in the environmental risk assessment of ECONOR. Chemosphere 40:775–782.PubMedCrossRefGoogle Scholar
  19. Boxall ABA, Blackwell P, Cavallo R, Kay P, Tolls J (2002) The sorption and transport of a sulfonamide antibiotic in soil systems. Toxicol Lett 131:19–28.PubMedCrossRefGoogle Scholar
  20. Briggs GG (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors and the parachor. J Agric Food Chem 29:1050–1059.CrossRefGoogle Scholar
  21. Bull DL, Ivie GW, MacConnell JG, Gruber VF, Ku CC, Arison BH, Stevenson JM, VandenHeuve WJA (1984) Fate of avermectin B 1a in soil and plants. J Agric Food Chem 32:94–102.CrossRefGoogle Scholar
  22. Burka JF, Hammell KL, Horsberg TE, Johnson GR, Rainnie DJ, Speare DJ (1997) Drugs used in salmonid aquaculture: a review. J Vet Pharmacol Ther 20:333–349.PubMedCrossRefGoogle Scholar
  23. Burkepile DE, Moore MT, Holland MM (2000) Susceptibility of five non-target organisms to aqueous diazinon exposure. Bull Environ Contam Toxicol 64:114–121.PubMedCrossRefGoogle Scholar
  24. Campbell WC, Fisher MH, Stapley EO, Albers-Schonberg G, Jacob TA (1983) Ivermectin: a potent new antiparasitic agent. Science 221:823–828.PubMedGoogle Scholar
  25. Canavan A, Coyne R, Kennedy DG, Smith P (2000) Concentration of 22,23-dihydroavermectim B1a detected in the sediments at an Atlantic salmon farm using orally administered ivermectin to control sea-lice infestation. Aquaculture 182:229–240.CrossRefGoogle Scholar
  26. Capone DG, Weston DP, Miller V, Shoemaker C (1996) Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture 145:55–75.CrossRefGoogle Scholar
  27. Catherman DR, Szabo J, Batson DB, Cantor AH, Tucker RE, Mitchell JR (1991) Metabolism of narasin in chickens and quail. Poult Sci 70:120–125.PubMedGoogle Scholar
  28. Chen Y, Rosazza JPN, Reese CP, Chang HY, Nowakowski MA, Kiplinger JP (1997) Microbial models of soil metabolim: biotransformations of danofloxacin. J Ind Microbiol Biotechnol 19:378–384.PubMedCrossRefGoogle Scholar
  29. Chien YH, Lai HT, Lui SM (1999) Modeling the effects of sodium chloride on degradation of chloramphenicol in aquaculture pond sediment. Sci Total Environ 239:81–87.PubMedCrossRefGoogle Scholar
  30. Chiu SHL, Green ML, Baylis FP, Eline D, Rosegay A, Meriwether H, Jacob TA (1990) Absorption, tissue distribution, and excretion of tritium-labelled ivermectin in cattle, sheep, and rat. J Agric Food Chem 38:2072–2076.CrossRefGoogle Scholar
  31. Committee for Veterinary Medicinal Products (CVMP) (1997) Note for guidance: environmental risk assessment for veterinary medicinal products other than GMO-containing and immunological products. EMEA/CVMP/055/96-FINAL. European Agency for the Evaluation of Medicinal Products, London.Google Scholar
  32. Cook DF, Dadour IR, Ali DN (1996) Effect of diet on the excretion profile of ivermectin in cattle faeces. Int J Parasitol 26:291–295.PubMedCrossRefGoogle Scholar
  33. Cook RR (1995) Disposal of animal medicines. In: Animal Medicines: A User’s Guide: Transport, Storage and Disposal of Animal Medicines. National Office of Animal Health Ltd, Enfield, UK.Google Scholar
  34. Coyne R, Hiney M, O’Connor B, Kerry J, Cazabon D, Smith P (1994) Concentration and persistence of oxytetracycline in sediments under a marine salmon farm. Aquaculture 123:31–42.CrossRefGoogle Scholar
  35. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment; agents of subtle change? Special report. Environ Health Perspect (Suppl) 107:907–938.PubMedGoogle Scholar
  36. Davies IM, Rodger GK (2000) A review of the use of ivermectin as a treatment for sea lice (Lepeophtheirus salmonis (Kroyer) and Caligus elongatus Nordmann) infestation in farmed Atlantic salmon (Salmo salar L.). Aquacult Res 31:869–883.CrossRefGoogle Scholar
  37. Davies IM, McHenry JG, Rae GH (1997) Environmental risk of dissolved ivermectin to marine organisms. Aquaculture 158:63–275.CrossRefGoogle Scholar
  38. Davies IM, Gillibrand PA, McHenry JG, Rae GH (1998) Environmental risk of ivermectin to sediment-dwelling organisms. Aquaculture 163:29–46.CrossRefGoogle Scholar
  39. Davis ML, Lofthouse TJ, Stamm JM (1993) Aquatic photodegradation of 14C-sarafloxicin hydrochloride. Abstr Pap Am Chem S 205:91.Google Scholar
  40. Donoho AL (1984) Biochemical studies on monensin. J Anim Sci 58:1528–1539.PubMedGoogle Scholar
  41. Donoho AL (1987) Metabolism and residue studies with actaplanin. Drug Metab Rev 18:163–176.PubMedGoogle Scholar
  42. Elanco (1998) Romensin G100 Premix: Material Safety Data Sheet. Elanco Animal Health, Speke, UK.Google Scholar
  43. Elanco (2000) Apralan soluble powder: Material Safety Data Sheet: Elanco Animal Health, Speke, UK.Google Scholar
  44. Environment Agency (EA) (1997) The occurrence of sheep-dip pesticides in environmental waters. National Centre for Toxic and Persistent Substances, Environment Agency, Peterborough.Google Scholar
  45. Environment Agency (1998) Pesticides 1998: a summary of monitoring of the aquatic environment in England and Wales. National Centre for Ecotoxicology and Hazardous Substances, Environment Agency, Wallingford.Google Scholar
  46. Environment Agency (1999) Sheep dip chemicals and textiles working group: a strategy for reducing sheep dip chemical pollution from the textile industry. National Centre for Ecotoxicology and Hazardous Substances, Environment Agency, Wallingford.Google Scholar
  47. Environment Agency (2000) Welsh sheep dip monitoring programme 1999. Environment Agency Wales Cardiff. Environment Agency Midland Region, Solihull, April 2001.Google Scholar
  48. Environment Agency (2001) Pesticides 1999/2000: a summary of monitoring of the aquatic environment in England and Wales. National Centre for Ecotoxicology and Hazardous Substances, Environment Agency, Wallingford.Google Scholar
  49. Ervik A, Thorsen B, Eriksen V, Lunestad BT, Samuelsen OB (1994) Impact of administering antibacterial agents on wild fish and blue mussels Mytilus edulis in the vicinity of fish farms. Dis Aquat Org 18:45–51.Google Scholar
  50. EU (1992) Council Directive 81/852/EEC of the Commission of September 28, 1981, as published in the Official Journal of the European Community of November 6, 1981, No. L317, page 16, amended by Directive 92/18/EEC of the Commission of March 20, 1992 as published in the Official Journal of the European Community of April 10, 1002, No. L97, p. 1.Google Scholar
  51. FIDIN (2000) Veterinary therapeutic antibiotic use in the Netherlands: facts and figures. FIDIN presentation 12 April 2000, Societeit de Witte, the Hague.Google Scholar
  52. Floate KD (1998) Off-target effects of ivermectin on insects and on dung degradationin southern Alberta, Canada. Bull Entomol Res 88:25–35.Google Scholar
  53. Forbes AB (1993) A review of regional and temporal use of avemectins in cattle and horses worldwide. Vet Parasitol 48:19–28.PubMedCrossRefGoogle Scholar
  54. Gavalchin J, Katz SE (1994) The persistence of fecal-borne antibiotics in soil. J AOAC Int 77:481–485.Google Scholar
  55. Gilbertson TJ, Hornish RE, Jaglan PS, Koshy T, Nappier JL, Stahl GL, Cazers AR, Nappier JM, Kubicek MF, Hoffman GA, Hamlow P (1990) Environmental fate of ceftiofur sodium, a cephalosporin antibiotic. Role of animal excreta in its decomposition. J Agric Food Chem 38:890–894.CrossRefGoogle Scholar
  56. Gover J, Strong L (1996) Determination of the toxicity of faeces of cattle treated with an ivermectin sustained-release bolus and preference trials using a dung fly, Neomyia cornicina. Entomol Exp Appl 81:133–139.CrossRefGoogle Scholar
  57. Grant A, Briggs AD (1998) Toxicity of ivermectin to estuarine and marine invertebrates. Mar Pollut Bull 36:540–541.CrossRefGoogle Scholar
  58. Grave K, Engelstad M, Søli NE, Toverud EL (1991) Clinical use of dichlorvos (Nuvan®) and trichlorfon (Neguvon®) in the treatment of salmon louse, Lepeophtheirus salmonis. Compliance with the recommended treatment procedures. Acta Vet Scand 32:9–14.PubMedGoogle Scholar
  59. Grave K, Lingaas E, Bangen M, Ronning M (1999) Surveillance of the overall consumption of antibacterial drugs in humans, domestic animals and farmed fish in Norway in 1992 and 1996. J Antimicrob Chemother 43:243–252.PubMedCrossRefGoogle Scholar
  60. Greiner P, Ronnefarth I (2001) Environmental risk assessment of veterinary medicines from a regulatory perspective. Paper presented at the SETAC Europe 11th Annual Meeting, Madrid, May 2001.Google Scholar
  61. Gruber VF, Halley BA, Hwang S-C, Ku CC (1990) Mobility of avermectin B1a in soil. J Agric Food Chem 38:886–890.CrossRefGoogle Scholar
  62. Gustafson RH, Bowen RE (1997) Antibiotic use in animal agriculture. J Appl Microbiol 83:531–541.PubMedCrossRefGoogle Scholar
  63. Halley BA, Green ML, Chiu SHL (1986) Tissue depletion and metabolism of radiolabelled MK-0933 in cattle dosed percutaneously. Environmental assessment for the Ivomec © Pour-On Formulation, March 22, 1990 (unpublished).Google Scholar
  64. Halley BA, Jacob TA, Lu AYH (1989) The environmental impact of the use of ivermectin: environmental effects and fate. Chemosphere 18:1543–1563.CrossRefGoogle Scholar
  65. Halley BA, VandenHeuvel WJA, Wislocki PG (1993) Environmental effects of the usage of avemectins in livestock. Vet Parasitol 48:109–125.PubMedCrossRefGoogle Scholar
  66. Halling-Sørenson B (1999) Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40:731–739.CrossRefGoogle Scholar
  67. Halling-Sørenson B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhøft HC, Jørgensen SE (1998) Occurrence, fate and effect of pharmaceutical substances in the environment: a review. Chemosphere 36:357–393.CrossRefGoogle Scholar
  68. Halling-Srenson B, Jensen J, Tjørnelund J, Montforts MHMM (2001) Worst-case estimations of predicted environmental soil concentrations (PEC) of selected veterinary antibiotics and residues used in Danish agriculture. In: Kümmerer K (ed) Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks. Springer, Heidelberg, pp 143–156Google Scholar
  69. Hamscher G, Abu-Quare A, Sczesny S, Höper H, Nau H (2000a) Determination of tetracyclines and tylosin in soil and water samples from agricultural areas in lower Saxony. In: van Ginkel LA, Ruiter A (eds) Proceedings of the Euroresidue IV Conference, Veldhoven, Netherlands, 8–10 May 2000. National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands, pp 522–526.Google Scholar
  70. Hamscher G, Sczesny S, Abu-Quare A, Höper H, Nau H (2000b) Substances with pharmacological effects including hormonally active substances in the environment: identification of tetracyclines in soil fertilised with animal slurry. Dtsch Tierärztl Wochenschr 107:293–348.Google Scholar
  71. Hamscher G, Sczesny S, Höper H, Nau H (2000c) Tetracycline and chlortetracycline residues in soil fertilized with liquid manure. In: Hartung J, Wathes C (2000) (eds) Livestock Farming and the Environment, Sonderheft 226. Braunshweig, Germany, pp 27–31.Google Scholar
  72. Hansen PK, Lunestad BT, Samuelsen OB (1993) Effects of oxytetracycline, oxolinic acid and flumequine on bacteria in an artificial marine fish farm sediment. Can J Microbiol 39:1307–1312.CrossRefGoogle Scholar
  73. Harries JE, Sheahan DA, Jobling S, Matthiessen P, Neall P, Sumpter JP, Taylor T, Zaman N (1997) Estrogenic activity in five United Kingdom rivers detected by the measurement of vitellogenesis in caged male trout. Environ Toxicol Chem 16:534–542.CrossRefGoogle Scholar
  74. Hektoen H, Berge JA, Hormazabal V, Yndestad M (1995) Persistence of antibacterial agents in marine sediments. Aquaculture 133:175–184.CrossRefGoogle Scholar
  75. Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118.PubMedCrossRefGoogle Scholar
  76. Holm JV, Rügge K, Bjerg PL, Christensen TH (1995) Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (Grinsted, Denmark). Environ Sci Technol 29:1415–1420.CrossRefGoogle Scholar
  77. Holten Lützhøft HC, Halling-Sørensen B, Jørgensen SE (1999) Algal toxicity of antibacterial agents applied in Danish fish farming. Arch Environ Contam Toxicol 36:1–6.CrossRefGoogle Scholar
  78. Høy T, Horsberg TE, Nafstad I (1990) The disposition of ivermectin in Atlantic salmon (Salmo salar). Pharmacol Toxicol 67:307–312.PubMedCrossRefGoogle Scholar
  79. HSE (1997) Sheep dipping. Booklet AS29 (revision 2). Health and Safety Executive, London.Google Scholar
  80. Hustvedt SO, Salte R, Kvendseth O, Vassvik V (1991) Bioavailability of oxolinic acid in Atlantic salmon (Salmo salar L.) from medicated feed. Aquaculture 97:305–310.CrossRefGoogle Scholar
  81. Ingerslev F, Halling-Sørensen B (2001) Biodegradability of metronidazole, olaquindox and tylosin and formation of tylosin degradation products in aerobic soil/manure slurries. Chemosphere 48:311–320.Google Scholar
  82. Intervet (1999) Salocin: Safety Data Sheet. Intervet, Milton Keynes, UK.Google Scholar
  83. Jacobsen P, Berglind L (1988) Persistence of oxytetracycline in sediments from fish farms. Aquaculture 70:365–370.CrossRefGoogle Scholar
  84. Jernigan AP, Herd RP, Sams R (1990) Determination of ivermectin in equine feces. Fed Am Soc Exp Biol 4:Abstract 2810.Google Scholar
  85. Jørgensen SE, Halling-Sørensen B (2000) Drugs in the environment. Chemosphere 40: 691–699.PubMedCrossRefGoogle Scholar
  86. Kerry J, Coyne R, Gilroy D, Hiney M, Smith P (1996) Spatial distribution of oxytetracycline and elevated frequencies of oxytetracycline resistance in sediments beneath a marine salmon farm following oxytetracycline therapy. Aquaculture 145:31–39.CrossRefGoogle Scholar
  87. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211.PubMedCrossRefGoogle Scholar
  88. Kopf W (1995) Wirkung endokriner stoffe in biotests mit wasserorganismen. Vortrag bei der 50. Fachtung des bay, LA fu wasserwirtschaft: stoffe mit endokriner. Wirkung im Wasser (abstract).Google Scholar
  89. Kummerer K, Al-Ahmed A, Mersch-Sundermann V (2000) Biodegradation of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40:701–710.PubMedCrossRefGoogle Scholar
  90. Lai HT, Liu SM, Chien YH (1995) Transformation of chloramphenicol and oxytetracycline in aquaculture pond sediments. J Environ Sci Health A 30:1897–1923.CrossRefGoogle Scholar
  91. Lanzky PF, Halling-Sørensen B (1997) The toxic effect of the antibiotic metronidazole on aquatic organisms. Chemosphere 35:2553–2561.PubMedCrossRefGoogle Scholar
  92. Larkin DJ, Tjeerdema RS (2000) Fate and effects of diazinon. Rev Environ Contam Toxicol 166:49–82.PubMedGoogle Scholar
  93. Lewis KA, Bardon KS (1998) A computer-based informal environmental management system for agriculture. Environ Model Software 13:123–137.CrossRefGoogle Scholar
  94. Lewis S (1998) Proposed environmental quality standards for sheep dip chemicals in water. Chlorfenvinphos, Coumaphos, Diazinon, Fenchlorphos, Flumethrin and Propetamphos—an update. Draft R & D Report P128. Environment Agency, Bristol, England.Google Scholar
  95. Lewis S, Watson A, Hedgecott S (1993) Propsed environmental quality standards for sheep dip chemicals in water. Chlorfenvinphos, Coumaphos, Diazinon, Fenchlorphos, Flumethrin and Propetamphos. WRc plc, R & D Note 216. Scotland and Northern Ireland Forum for Environmental Research and the National Rivers Authority, Bristol, England.Google Scholar
  96. Liddel JS (2001) Sheep ectoparasiticide use in the UK: 1993, 1997 and 1999. Paper presented to the 5th International Sheep Veterinary Congress, Stellenbosch, South Africa. 21–25 JanuaryGoogle Scholar
  97. Littlejohn JW, Melvin AAL (1991) Sheep-dips as a source of pollution of freshwaters: a study in Grampian Region. Journal of the Chartered Institute of Water and Environmental Management 5:21–27.CrossRefGoogle Scholar
  98. Loke ML, Ingerslev F, Halling-Sørensen B, Tjornelund J (2000) Stability of tylosin A in manure containing test systems determined by high performance liquid chromatography. Chemosphere 40:759–765.PubMedCrossRefGoogle Scholar
  99. Lunestad BT (1992) Fate and effects of antibacterial agents in aquatic environments. In: Proceedings of the Conference on Chemotherapy in Aquaculture: From Theory to Reality. Office International des Epizooties, Paris, France. p. 152–161.Google Scholar
  100. Lunestad BT, Samuelsen OB, Fjelde S, Ervik A (1995) Photostability of eight antibacterial agents in seawater. Aquaculture 134:217–225.CrossRefGoogle Scholar
  101. Madsen M, Overgaard Nielsen B, Holter P, Pedersen OC, Brrochner Jespersen J, Vagn Jensen K-M, Nansen P, Gronvold J (1990) Treating cattle with ivermectins: effects on fauna and decomposition of dung pats. J Appl Ecol 27:1–15.Google Scholar
  102. MAFF (1998) Code of good agricultural practice for the protection of water. Ministry of Agriculture Fisheries and Food, Welsh Office Agricultural Department, Cardiff, Wales.Google Scholar
  103. Magnussen JD, Dalidowicz JE, Thomson TD, Donoho AL (1991) Tissue residues and metabolism of avilamycin in swine and rats. J Agric Food Chem 39:306–310.CrossRefGoogle Scholar
  104. Marengo JR, Kok RA, O’Brien K, Velagaleti R, Stamm JM (1997) Aerobic biodegradation of (14C)-sarafloxicin hydrochloride in soil. Environ Toxicol Chem 16:462–471.CrossRefGoogle Scholar
  105. Matha V, Weiser J (1988) The molluscicidal effect of ivermectin on Biomphalaria glabrafa. J Inveretebr Pathol 52:354–355.CrossRefGoogle Scholar
  106. McCracken DI (1993) The potential for avermectins to affect wildlife. Vet Parasitol 48: 273–280.PubMedCrossRefGoogle Scholar
  107. McKellar QA (1997) Ecotoxicology and residues of anthelmintic compounds. Vet Parasitol, 72:413–435.PubMedCrossRefGoogle Scholar
  108. Melancon SM, Pollard JE, Hern SC (1986) Evaluation of SESOIL, PRZM and PESTAN in a laboratory column leaching experiment. Environ Toxicol Chem 5:865–878.Google Scholar
  109. Merck, Sharp & Dohme, (1983) Environmental impact report on Ivomec injection. New Anim Drug Application No.128-409. Rahway, NJ, USA.Google Scholar
  110. Merial (1998) Eprinex pour-on for beef and dairy cattle: Product Safety Information Sheet. Merial Animal Health Ltd, Harlow, UK.Google Scholar
  111. Meyer MT, Bumgarner JE, Varns JL, Daughtridge JV, Thurman EM, Hostetler KA (2000) Use of radioimmunoassay as a screen for antibiotics in confined animal feeding operations and confirmation by liquid chromatography/mass spectrometry. Sci Total Environ 248:181–187.PubMedCrossRefGoogle Scholar
  112. Meyer W, Backhaus T, Froehner K, Scholze M, Grimme H (2001) Single substance and mixture toxicity of selected pharmaceuticals. Presented at the SETAC Europe 11th Annual Meeting, Madrid, May 2001.Google Scholar
  113. Migliore L, Brambilla G, Cozzolino S, Gaudio L (1995) Effect on plants of sulphadi-methoxine used in intensive farming (Panicum miliaceum, Pisum sativum and Zea mays). Agric Ecosyst Environ 52:103–110.CrossRefGoogle Scholar
  114. Migliore L, Brambilla G, Casoria P, Civitareale SC, Gaudio L (1996) Effect of sulphadimethoxine contamination on barley (Hordeum disticum L., Poaceae, Liliopsida). Agric Ecosyst Environ 60:121–128.CrossRefGoogle Scholar
  115. Migliore L, Civitareale C, Brambilla G, Dojmi Di Delupis G (1997a) Toxicity of several important agricultural antibiotics to Artemia. Water Res 31:1801–1806.CrossRefGoogle Scholar
  116. Migliore L, Civitareale C, Brambilla SC, Casoria P, Gaudio L (1997b) Effects of sulphadimethoxine on cosmopolitan weeds (Ameranthus retroflexus L., Plantago major L. and Rumex acetosella L.). Agric Ecosyst Environ 65:163–168.CrossRefGoogle Scholar
  117. Migliore L, Cozzolino S, Fiori M (2000) Phytotoxicity to and uptake of flumequine used in intensive aquaculture on the aquatic weed, Lythrum salicaria L. Chemosphere 40: 741–750.PubMedCrossRefGoogle Scholar
  118. Miller JA, Kunz SE, Oehlar DD, Miller RW (1981) Larvicidal activity of Merck MK-933, an avermectin, against the horn fly, stable fly, face fly, and house fly. J Econ Entomol 74:608–611.Google Scholar
  119. Montforts MHMM (1999) Environmental risk assessment for veterinary medicinal products. Part 1: other than GMO-containing and immunological products. RIVM report 601300 001. National Institute of Public Health and the Environment, Bilthoven, The Netherlands.Google Scholar
  120. Nessel RJ, Wallace DH, Wehner TA, Tait WE, Gomez L (1989) Environmental fate of ivermectin in a cattle feedlot. Chemosphere 18:1531–1541.CrossRefGoogle Scholar
  121. Novartis (1999) Safety Data Sheet: Sulfachloropyridazine-Na. Release date 18 Oct 1999. Basel, Switzerland.Google Scholar
  122. Nowara A, Burhenne J, Spiteller M (1997) Binding of fluoroquinolone carboxylic acid derivatives to clay minerals. J Agric Food Chem 45:1459–1463.CrossRefGoogle Scholar
  123. Oka H, Ikai Y, Kawamura N, Yamada M, Harada K-I, Ito S, Suzuki, M (1989) Photodecomposition products of tetracycline in aqueous solution. J Agric Food Chem 37: 226–231.CrossRefGoogle Scholar
  124. Pelicaan CHP, van Turnhout J, Pijpers A (2000) Verbruikscijfers van antibacteriële middelen bij landbouwhuisdieren. Poster obtained from University of Utrecht, The Netherlands.Google Scholar
  125. Pepper T, Carter A (2000) Monitoring of pesticides in the environment. Report prepared for the Pesticides in the Environment Working Group. R & D Project E1-076. Bristol, England.Google Scholar
  126. Pouliquen H, Le Bris H, Pinault L (1992) Experimental study of the therapeutic application of oxytetracycline, its attenuation in sediment and sea water, and implication for farm culture of benthic organisms. Mar Ecol Prog Ser 89:93–98.Google Scholar
  127. Purdom CE, Hardiman PA, Bye VA, Eno NC, Tyler CR, Sumpter JP (1994) Oestrogenic effects of effluents from sewage treatment works. Chem Ecol 8:275–285.Google Scholar
  128. Rabølle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40:715–722.PubMedCrossRefGoogle Scholar
  129. Richardson MI, Bowron JM (1985) The fate of pharmaceutical chemicals in the aquatic environment. J Pharm Pharmacol 37:1–12.PubMedGoogle Scholar
  130. Ridsdill-Smith TJ (1988) Survival and reproduction of Musca vetustissima Walker (Diptera: Muscidae) and a scarabaeine dung beetle in dung cattle treated with avermectin B 1. J Aust Entomol Soc 27:175–178.Google Scholar
  131. Ridsdill-Smith TJ (1993) Effects of avermectin residues in cattle dung on dung beetle (Coleoptera: Scarabaeidae) reproduction and survival. Vet Parasitol 48:127–137.PubMedCrossRefGoogle Scholar
  132. Samuelsen OB (1989) Degradation of oxytetracycline in seawater at two different temeratures and light intensities and the persistence of oxytetracycline in the sediment from a fish farm. Aquaculture 83:7–16CrossRefGoogle Scholar
  133. Samuelsen OB, Solheim E, Lunestad BT (1991) Fate and microbiological effects of furazolidone in a marine aquaculture sediment. Sci Total Environ 108:275–283.PubMedCrossRefGoogle Scholar
  134. Samuelsen OB, Lunestad BT, Husevaåg B, Hølleland T, Ervik A (1992a) Residues of oxolinic acid in wild fauna following medication in fish farms. Dis Aqua Org 12:111–119.Google Scholar
  135. Samuelsen OB, Torsvik V, Ervik A (1992b) Long-range changes in oxytetracycline concentration and bacterial resistance towards oxytetracycline in a fish farm sediment after medication. Sci Total Environ 114:25–36.PubMedCrossRefGoogle Scholar
  136. Samuelsen OB, Lunestad BT, Ervik A, Fjelde S (1994) Stability of antibacterial agents in an artificial marine aquaculture sediment studied under laboratory conditions. Aquaculture 126:283–290.CrossRefGoogle Scholar
  137. Schmidt CD (1983) Activity of an avermectin against selected insects in aging manure. Environ Entomol 12:455–457.Google Scholar
  138. Schweinfurth H, Lange R, Gunzel P (1996) Environmental fate and ecological effects of steroidal estrogens. IBC Conference Proceedings “Oestrogenic Compounds in the Environment,” London, 9–10 May 1996.Google Scholar
  139. SEPA (1999) Enamectin benzoate an environmental risk assessment. SEPA 66/99. Report of the SEPA Fish Farm Advisory Group, East Kilbride, Scotland.Google Scholar
  140. SEPA (2000) Long-term biological monitoring trends in the Tay System 1988–1999. Scottish Environment Protection Agency, Eastern Region, Scotland.Google Scholar
  141. Shore LS, Shemesh M, Cohen R (1988) The role of oestradial and oestrone in chicken manure silage in hyperoestrogenism in cattle. Aust Vet J 65:67.Google Scholar
  142. Smith P (1996) Is sediment deposition the dominant fate of oxytetracycline used in marine salmonid farms: a review of available evidence. Aquaculture 146:157–169.CrossRefGoogle Scholar
  143. Sommer C, Overgaard Nielsen B (1992) Larvae of the dung beetle Onthophagus gazella F. (Col., Scarabaeidae) exposed to lethal and sublethal ivermectin concentrations. J Appl Entomol 114:502–509.CrossRefGoogle Scholar
  144. Sommer C, Steffansen B (1993) Changes with time after treatment in the concentrations of ivermectin in fresh cow dung and in cow pats aged in the field. Vet Parasitol 48: 67–73.PubMedCrossRefGoogle Scholar
  145. Sommer C, Steffansen B, Overgaard Nielsen B, Grønvold J, Kagn-Jensen KM, Brøchner Jespersen J, Springborg J, Nansen P (1992) Ivermectin excreted in cattle dung after subcutaneous injection or pour-on treatment:concentrations and impact on dung fauna. Bull Entomol Res 82:257–264.Google Scholar
  146. Sommer C, Gronvold J, Holter P, Nansen P (1993) Effect of ivermectin on two afrotropical beetles Onthophagus gazella and Diastellopalpus quinquedens (Coleoptera: Scarabaeidae). Vet Parasitol 48:171–179.PubMedCrossRefGoogle Scholar
  147. Spaepen KRI, Leemput LJJ, Wislocki PG, Verschueren C (1997) A uniform procedure to estimate the predicted environmental concentration of the residues of veterinary medicines in soil. Environ Toxicol Chem 16:1977–1982.CrossRefGoogle Scholar
  148. Stout SJ, Wu J, daCunha AR, King KG, Lee A (1991) Maduramycin a: characterisation of 14C-derived residues in turkey excreta. J Agric Food Chem 39:386–391.CrossRefGoogle Scholar
  149. Strong L (1992) Avermectins: a review of their impact on insects of cattle dung. Bull Entomol Res 82:265–274.Google Scholar
  150. Strong L (1993) Overview: the impact of avermectins on pastureland ecology. Vet Parasitol 48:3–17.PubMedCrossRefGoogle Scholar
  151. Strong L, Brown TA (1987) Avermectins in insect control and biology: a review. Bull Entomol Res 77:357–389.CrossRefGoogle Scholar
  152. Strong L, James S (1993) Some effects of ivermectin on the yellow dung fly, Scatophaga stercoraria. Vet Parasitol 48:181–191.PubMedCrossRefGoogle Scholar
  153. Strong L, Wall R (1994) Effects of ivermectin and moxidectin on the insects of cattle dung. Bull Entomol Res 84:403–409.Google Scholar
  154. Taylor SM (1999) Sheep scab—environmental considerations of treatment with doramectin. Vet Parasitol 83:309–317.PubMedCrossRefGoogle Scholar
  155. Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken R-D, Servos M (1999) Behaviour and occurrence of estrogens in municipal sewage treatment plants. I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225:81–90.PubMedCrossRefGoogle Scholar
  156. Thain JE, Davies IM, Rae GH, Allen YT (1997) Acute toxicity of ivermectin to the lugworm Arenicola marina. Aquaculture 159:47–52.CrossRefGoogle Scholar
  157. Thorpe JE, Talbot C, Miles MS, Rawlings C, Keay DS (1990) Food consumption in 24 hours by Atlantic salmon (Salmo salar L) in a sea-cage. Aquaculture 90:41–47.CrossRefGoogle Scholar
  158. Thurman EM, Lindsey ME (2000) Transport of antibiotics in soil and their potential for groundwater contamination. Poster presented at The SETAC World Congress, Brighton, May 2000.Google Scholar
  159. Tomlin CDS (1997) The Pesticide Manual, 11th Ed. BCPC, Farnham, Surrey, UK.Google Scholar
  160. Turner MJ, Schaeffer JM (1989) Mode of action of ivermectin. In: Campbell WC (ed) Ivermectin and Abamectin. Springer-Verlag, New York, pp 73–88.Google Scholar
  161. USEPA (1997) Profile of the pharmaceutical manufacturing industry. EPA/310-R-97-005. U.S. Environmental Protection Agency, Office of Compliance, Washington, DC.Google Scholar
  162. USEPA (2001) ECOTOX Database System. Prepared for USEPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division (MED), Duluth, MN, by OAO Corporation, Duluth, MN.Google Scholar
  163. van Dijk J, Keukens HJ (2000) The stability of some veterinary drugs and coccidiostats during composting and storage of laying hen and broiler faeces. In: van Ginkel LA, Ruiter A (eds) Residues of Veterinary Drugs in Food. Proceedings of the Euroresidue IV Conference, Veldhoven, The Netherlands, 8–10 May, 2000.Google Scholar
  164. Velagaleti R, Gill M (2003) Degradation and depletion of pharmaceuticals in the environment. In: Daughton CG, Ternes TA (eds) Proceedings of the American Chemical Society: Issues in the Analysis of Environmental Endocrine Disruptors, San Francisco, CA, 27 March, 2000.Google Scholar
  165. Velagaleti RR, Davis ML, O’Brien GK (1993) The bioavailability of 14C-sarafloxicin hydrochloride in three soils and a marine sediment as determined by biodegradation and sorption/desorption parameters. Poster presented at the American Chemical Society E-Fate Meeting, 28 March, 1993, Abstr Pap Am Chem S 205:92.Google Scholar
  166. VICH (unpublished) Analysis of data and information to support a PEC soil trigger value for Phase I.Google Scholar
  167. VICH (2000) Environmental impact assessment (EIAs) for veterinary medicinal products (VMPs): Phase 1. VICH GL6 (Ecotoxicity Phase 1), June 2000, For Implementation at Phase 7. Brussels, Belgium.Google Scholar
  168. Vink K, Dewi L, Bedaux J, Tompot A, Hermans M, VanStraalen NM (1995) The importance of the exposure route when testing the toxicity of pesticides to saprotrophic isopods. Environ Toxicol Chem 14:1225–1232.Google Scholar
  169. Virtue WA, Clayton JW (1997) Sheep Dip Chemicals and Water Pollution Sci Tot Env 194/195:207–217.Google Scholar
  170. VMD (2001) Sales of antimicrobial products used as veterinary medicines and growth promoters in the UK in 1999. Veterinary Medicines Directorate, Addlestone, UK.Google Scholar
  171. Wall R, Strong L (1987) Environmental consequences of treating cattle with the antiparasitic drug ivermectin. Nature (Lond) 327:418–421.CrossRefGoogle Scholar
  172. Warman PR (1980) The effect of amprolium and aureomycin on the nitrification of poultry manure-amended soil. J Soil Sci Soc Am 44:1333–1334.CrossRefGoogle Scholar
  173. Warman PR, Thomas RL (1981) Chlortetracycline in soil amended with poultry manure. Can J Soil Sci 61:161–163.CrossRefGoogle Scholar
  174. Webb SF (2001) A data-based perspective on the environmental risk assessment of human pharmaceuticals. I. Collation of available ecotoxicity data. In: Kümmerer K (ed) Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks. Springer, Heidelberg. pp. 175–201.Google Scholar
  175. Weereasinghe CA, Towner D (1997) Aerobic biodegradation of virginamycin in soil. Environ Toxicol Chem 16:1873–1876.CrossRefGoogle Scholar
  176. Wollenberger L, Halling-Sørensen B, Kusk KO (2000) Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40:723–730.PubMedCrossRefGoogle Scholar
  177. WRc-NSF (2000) The development of a model for estimating the environmental concentrations (PECs) of veterinary medicines in soil following manure spreading (Project Code VM0295). Final Project Report to MAFF, London, England.Google Scholar
  178. Yeager RL, Halley BA (1990) Sorption/desorption of [14C] efrotomycin with soils. J Agric Food Chem 38:886–890.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • A. B. A. Boxall
    • 1
  • L. A. Fogg
    • 1
  • P. A. Blackwell
    • 1
  • P. Blackwell
    • 1
  • P. Kay
    • 1
  • E. J. Pemberton
    • 2
  • A. Croxford
    • 2
  1. 1.Cranfield Centre for EcoChemistryShardlowUK
  2. 2.Environment AgencyNational Centre for Ecotoxicology and Hazardous SubstancesWallingfordUK

Personalised recommendations