Algal Toxicity Tests for Environmental Risk Assessments of Metals

  • Colin R. Janssen
  • Dagobert G. Heijerick
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 178)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams N, Dobbs AJ (1984) A comparison of results from 2 test methods for assessing the toxicity of aminotriazole to Selenastrum capricornutum. Chemosphere 13:965–971.Google Scholar
  2. Adams N, Goulding KH, Dobbs AJ (1985) Toxicity of eight water-soluble organic chemicals to Selenastrum capricornutum: a study of methods for calculating toxic values using different growth parameters. Arch Environ Contam Toxicol 14:333–345.Google Scholar
  3. Ahluwalia AS, Kaur M (1988) Effect of some heavy metal compounds on growth and differentiation in a blue-green and a green alga. Microbios 53:37–45.Google Scholar
  4. Aitchison PA, Butt OS (1973) The relation between the synthesis of inorganic polyphosphate and phosphate uptake by Chlorella vulgaris. J Exp Bot 24:495–510.Google Scholar
  5. Allen HE, Hall RH, Brisbin TD (1980) Metal speciation: effects on aquatic toxicology. Environ Sci Technol 14:441.PubMedGoogle Scholar
  6. Anderson MA, Morel FMM, Guillard RRL (1978) Growth limitation of a coastal diatom by low zinc ion activity. Nature (Lond) 276:70–71.Google Scholar
  7. APHA (1985) Standard Methods for the Examination of Water and Wastewater, 16th Ed. American Public Health Association, Washington, DC.Google Scholar
  8. ASTM (1990) New Standard Guide for Conducting Static 96h Toxicity Tests with Microalgae. American Society for Testing and Materials, Philadelphia, PA.Google Scholar
  9. ASTM (1993) Standard Practice for Algal Growth Potential Testing with Selenastrum capricornutum. D 3978-80. American Society for Testing and Materials, Philadelphia, PA.Google Scholar
  10. Bartlett L, Rabe FW (1974) Effects of copper, zinc and cadmium on Selenastrum capricornutum. Water Res 8:179–185.Google Scholar
  11. Bates SS, Tessier A, Campbell PGC, Buffle J (1982) Zinc adsorption and transport by Chlamydomonas variabilis and Scenedesmus subspicatus (Chlorophyceae) grown in semicontinuous culture. J Phycol 18:521–529.Google Scholar
  12. Bates SS, Tessier A, Campbell PGC, Letourneau M (1985) Zinc-phosphorus interactions and variation in zinc accumulation during growth of Chlamydomonas variabilis (Chlorophyceae) in batch cultures. Can J Fish Aquat Sci 40:895–904.Google Scholar
  13. Benenati F (1990) Keynote address: Plants—keystone to risk assessment. In: Wang W, Gorsuch JW, Lower WR (eds) Plants for Toxicity Assessment. STP 1091. American Society for Testing and Materials, Philadelphia, PA, pp 5–13.Google Scholar
  14. Blaise C, Legault R, Bermingham N, Van Coillie R, Vasseur P (1986) A simple microplate algal assay technique for aquatic toxicity assessment. Toxic Assess 1:261–281.Google Scholar
  15. Blanck H, Wallin G, Wangberg S-A (1984) Species-dependent variation in algal sensitivity to chemical compounds. Ecotoxicol Environ Saf 8:339–351.PubMedGoogle Scholar
  16. Bold HC, Wynne MJ (1985) Introduction to the Algae, 2nd Ed. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  17. Bringmann G, KuÜhn R (1978) Testing of substances for their toxicity threshold: model organisms Microcystis aeruginosa and Scenedesmus quadricauda. Mitt Int Verein Limnol 21:275–284.Google Scholar
  18. Butler M, Hawkew AEJ, Young MM (1980) Copper tolerance in the green alga Chlorella vulgaris. Plant Cell Environ 3:119–126.Google Scholar
  19. Campbell PG, Stokes PM (1985) Acidification and toxicity of metal to aquatic biota. Can J Fish Aquat Sci 42:2034–2049.Google Scholar
  20. Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal Speciation and Bioavailability in Aquatic Systems. Wiley, Chichester, pp 45–102.Google Scholar
  21. Chapman GA (1985) Acclimation as a factor influencing metal criteria. In: Bahner R, Hansen D (eds) Aquatic Toxicology and Hazard Assessment, 8th Symposium. STP 894. American Society for Testing and Materials, Philadelphia, PA, pp 119–136.Google Scholar
  22. Chen CY, Lin KC (1997) Optimization and performance evaluation of the continuous algal toxicity test. Environ Toxicol Chem 16:1337–1344.Google Scholar
  23. Chiaudani G, Vighi M (1978) The use of Selenastrum capricornutum batch cultures in toxicity studies. Mitt Int Verein Limnol 21:316.Google Scholar
  24. Chu SP (1942) The influence of the mineral composition of the medium on the growth of planktonic algae. J Ecol 30:284–325.Google Scholar
  25. Coleman RD, Coleman RL, Rice EL (1971) Zinc and cobalt bioconcentration and toxicity in selected algal species. Bot Gaz 132:102–109.Google Scholar
  26. Conway HL, Williams SC (1979) Sorption of Cd and its effect on growth and the utilization tion of inorganic carbon and phosphorus of two freshwater diatoms. J Fish Res Board Can 35:286–294.Google Scholar
  27. Crist RJ, Oberholser K, Schwartz D, Marzoff J, Ryder D (1988) Interactions of metals and protons with algae. Environ Sci Technol 22:755–760.PubMedGoogle Scholar
  28. Davies AG (1978) Pollution studies with marine plankton. Mar Biol 15:381–508.Google Scholar
  29. De Schamphelaere KAC, Vasconcelos FM, Heijerick DG, Allen HE, Tack F, Janssen CR (2003). The effects of dissolved organic matter, pH and water hardness on copper toxicity to the green alga Pseudokirchneriella subcapitata: development and field validation of a predictive model. Environ Toxicol Chem in press.Google Scholar
  30. EC 1996. Technical Guidance Document in support of commission directive 93/67/EEC on risk asessment for new notified substances and commission regulation (EC) No. 1488/94 on risk assessment for existing substances—Part II, European Commission, Luxemburg.Google Scholar
  31. EEC: European Economic Community (1987) Methods for the determination of ecotoxicity: algal inhibition test. EEC Directive, 79/831, Annex V, Part C.Google Scholar
  32. Eloranta V (1982) Effect of slimecide Fennosan F50 on algal growth in different test media. Pap Puu 64:129–135.Google Scholar
  33. Errécalde O, Seidl M, Campbell PGC (1998) Influence of a low molecular weight metabolite (citrate) on the toxicity of cadmium and zinc to the unicellular green alga Selenastrum capricornutum. Water Res 32:419–429.Google Scholar
  34. Fitzgerald GP (1964) Factors in testing and application of algicides. Appl Microbiol 12: 247–253.PubMedGoogle Scholar
  35. Fitzgerald GP, Faust SL (1963) Factors affecting the algicidal and algistatic properties of copper. Appl Microbiol 11:345–351.PubMedGoogle Scholar
  36. Fletcher RL (1991) Marine microalgae as bioassay test organisms. In: Abel PD, Aviak V (eds) Ecotoxicology and the Marine Environment. Horwood, New York, pp 111–131.Google Scholar
  37. Foster PL (1977) Copper exclusion as a mechanism of heavy metal tolerance in a green alga. Nature (Lond) 269:322–323Google Scholar
  38. Franklin NM, Stauber JL, Markich SJ, Lim RP (2000a) pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.) Aquat Toxicol 48:275–289.PubMedGoogle Scholar
  39. Franklin NM, Stauber JL, Apte SC, Lim RP (2000b) The importance of cell density in algal bioassays. Poster presentation, 21–25 May, 2000. 10th SETAC-Europe Conference, Brighton, UK.Google Scholar
  40. Gaur JP, Singh AK (1991) Regulatory influence of light and temperature on petroleum toxicity to Anabaena doliolum. Environ Toxicol Water Qual 6:342–359.Google Scholar
  41. Gekeler W, Grill E, Winnacker E-L, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 150:197–202.Google Scholar
  42. Greene J, Peterson SA, Parrish L, Nimmo D (1991) Zinc sensitivity of Selenastrum capricornutum in algal assay medium with various EDTA concentrations. Can Tech Rep Fish Aquat Sci, 1774:252–254.Google Scholar
  43. Greeson PE (1982) An annotated key to the identification of commonly occuring and dominant genera of algae observed in the phytoplankton of the U.S. Geological Survey Water Supply Paper 2079. U.S. Government Printing Office, Washington DC.Google Scholar
  44. Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatin: the principal heavy metal complexing peptides of higher plants. Science 230:674–676.PubMedGoogle Scholar
  45. Guilard RRL, Ryther JH (1962) Studies on marine planktonic diatoms. I. Cyclotella nana Hustedd and Detonula confervacae (Cleve) Gran. Can J Microbiol 8:229–239.Google Scholar
  46. Hall J, Healey FP, Robinson GGC (1989a) The interaction of chronic copper toxicity with nutrient limitation in two chlorophytes in batch culture. Aquat Toxicol 14:1–14.Google Scholar
  47. Hall J, Healey FP, Robinson GGC (1989b) The interaction of chronic copper toxicity with nutrient limitation in chemostat cultures of Chlorella. Aquat Toxicol 14:15–26.Google Scholar
  48. Halling-Sorensen B, Nyholm N, Baun A (1996) Algal toxicity tests with volatile and hazardous compounds in air-tight test flasks with CO2 enriched headspace. Chemo-sphere 32:1513–1526.Google Scholar
  49. Hanstveit AO (1982) Evaluation of the results of the third ISO-interlaboratory study with an algal toxicity test. ISO/TC 147/SC 5/WG 5. Nederlands Normalisatie Instituut, Delft, The Netherlands.Google Scholar
  50. Harding JPC, Whittton BA (1977) Environmental factors reducing the toxicity of zinc to Stigeoclonium tenue. Br Phycol J 12:17–21.Google Scholar
  51. Hargreaves JW, Whitton BA (1976) Effect of pH on tolerance of Hormidium rivulare to zinc and copper. Oecologica (Berl) 26:235–243.Google Scholar
  52. Harrison PJ, Waters RE, Taylor FJR (1980) A broad spectrum artificial seawater medium for coastal and open ocean phytoplankton. J Phycol 16:28–35.Google Scholar
  53. Hawkins PR, Griffiths DJ (1982) Uptake and retention of copper by four species of marine phytoplankton. Bot Mar 25:551.Google Scholar
  54. Heijerick DG, De Schamphelaere KAC, Janssen CR (2002) Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: possibilities and limitations. Comp Biochem Physiol C 133:207–218, (in press)Google Scholar
  55. Hindak F (1990) Pseudokirchneriella subcapitata Korshikov, F-1990. Biol Pr 5:209.Google Scholar
  56. Holst RW, Ellwanger TC (1982) Pesticide Assessment Guidelines, Subdivision J. Hazard Evaluation: Nontarget Plants. EPA-54019-82-2020. USEPA, Washington, DC.Google Scholar
  57. Hörnström E (1990) Toxicity test with algae—a discussion of the batch method. Ecotoxicol Environ Saf 20:343–353.PubMedGoogle Scholar
  58. Howe G, Merchant S (1992) Heavy metal activated synthesis of peptides in Chlamydomonas reinhardtii. Plant Physiol 98:127–136.PubMedGoogle Scholar
  59. ISO International Organization for Standardization (1987) Water Quality: Algal Growth Inhibition Test. Draft International Standard ISO/DIS 8692. ISO, Geneva, Switzerland.Google Scholar
  60. Jackson GA, Morgan JJ (1978) Trace metal-chelator interactions and phytoplankton growth in seawater media: theoretical analysis and comparison with reported observations. Limnol Oceanogr 23:268–282.Google Scholar
  61. Janssen Pharmaceutica (1993a) The acute toxicity of cadmium on the growth of the unicellular green alga Selenastrum capricornutum. Final Environ Assess Rep. Rep AASc/0013. Janssen Pharmaceutica, Beerse, Belgium.Google Scholar
  62. Janssen Pharmaceutica (1993b) The acute toxicity of cadmiumoxide on the growth of the unicellular green alga Selenastrum capricornutum. Final Environ Assess Rep. Rep AASc/0012. Janssen Pharmaceutica, Beerse, Belgium.Google Scholar
  63. Jensen A, Rystad B (1974) Heavy metal tolerance of marine phytoplankton. I. The tolerance of three algal species to zinc in coastal sea water. J Exp Mar Biol Ecol 15: 145–157.Google Scholar
  64. Jouany JM, Ferard JF, Vasseur P, Gea J, Truhaut R, Rast C (1983) Interest of dynamic tests in acute ecotoxicity assessment of algae. Ecotoxicol Environ Saf 7:216–228.PubMedGoogle Scholar
  65. Källqvist T (1982) Toksisitets tester med alger. In: Laake M (ed) Okotoksikologiske Metoder for akvatisk Miljo. Nordic Cooperative Organization for Applied Research, Helsinki, Finland.Google Scholar
  66. Källqvist T, Ormerod K, Sortkjaer O (1980) Ring-test med metoder for mikroorganismer. Report No. 15. Ecotoxicological Methods for Aquatic Environments. Nordic Cooperative Organization for Applied Research, Helsinki, Finland.Google Scholar
  67. Kandegedara A, Rorabacher DB (1999) Noncomplexing tertiary amines as “Better” buffers covering the range of pH 3–11. Temperature dependence of their acid dissociation constants. Anal Chem 71:3140–3144.PubMedGoogle Scholar
  68. Klaine SJ, Lewis MA (1994) Algal and plant toxicity testing. In: Hoffman DJ, Rattner BA, Burton GA, Cairns J (eds) Handbook of Ecotoxicology. Lewis, Boca Raton, FL pp 163–184.Google Scholar
  69. Klaine SJ, Ward CH (1983) Growth-optimized algal bioassays for toxicity evaluation. Environ Toxicol Chem 2:245–249.Google Scholar
  70. Klass E, Rowe DW, Massaro EJ (1974) The effect of Cd on poulation growth of the green alga Scenedesmus quadricauda. Bull Environ Contam Toxicol 12:442–445.PubMedGoogle Scholar
  71. Klerks PL, Weis JS (1987) Genetic adaptation to heavy metals in aquatic organisms: a review. Environ Pollut 45:173–205.PubMedGoogle Scholar
  72. Kosakowska A, Falkowski L, Lewandowska J (1988) Effects of amino acids on the toxicity of heavy metals to phytoplankton. Bull Environ Contam Toxicol 40:532–538.PubMedGoogle Scholar
  73. Kühn R, Pattard N (1990) Results of the harmful effects of water pollutants to green algae (Scenedesmus subspicatus) in the cell multiplication inhibition test. Water Res 24:31–38.Google Scholar
  74. Kuwabara JS (1985) Phosphorus-zinc interactive effects on growth by Selenastrum capricornutum (Chlorophyta). Environ Sci Technol 19:417–421.PubMedGoogle Scholar
  75. Kuwabara JS, Leland HV (1986) Adaptation of Selenastrum capricornutum (Chlorophyceae) to copper. Environ Toxicol Chem 5:197–203.Google Scholar
  76. Lawrence SG, Holoka MH, Hamilton RD (1989) Effects of cadmium on a microbial food chain, Chlamydomonas reinhardtii and Tetrahymena vorax. Sci Total Environ 87/88:381–395.Google Scholar
  77. Lederman TC, Rhee G-Y (1982) Influence of hexachlorobiphenyl in Great Lakes phytoplankton in continuous culture. Can J Fish Aquat Sci 39:388–394.Google Scholar
  78. Leischman AA, Greene JC, Miller WE (1979) Bibliography of literature pertaining to the genus Selenastrum. EPA-600/9-79-021. USEPA, Corvallis, OR.Google Scholar
  79. Les A, Walker RW (1984) Toxicity and binding of copper, zinc and cadmium by the blue-green alga, Croococcus paris. Water Air Soil Pollut 23:129–139.Google Scholar
  80. Lewis MA (1990) Are laboratory-derived toxicity data for freshwater alga worth the effort? Environ Toxicol Chem 9:1279–1284.Google Scholar
  81. Lewis MA (1995) Algae and vascular plant tests. In: Rand GM (ed) Fundamentals of Aquatic Toxicology, 2nd Ed. Taylor and Francis, Washington, DC, pp 135–171.Google Scholar
  82. Lewis MA, Hamm BG (1986) Environmental modification of the photosynthetic response of lake plankton to surfactants and significance to a laboratory field comparison. Water Res 20:1575–1582.Google Scholar
  83. Li WKW (1979) Cellular composition and physiological characteristics of the diatom Thalassiosira weissflogii adapted to cadmium stress. Mar Biol 35:171–180.Google Scholar
  84. Lin KC, Lin CI, Chen CY (1996) The effect of limiting nutrient on metal toxicity to Selenastrum capricornutum. Toxicol Environ Chem 56:47–61.Google Scholar
  85. LISEC (1997) Effect of red seal zinc oxide on the growth of Selenastrum capricornutum. Study WE-06-142. LISEC, Genk, Belgium.Google Scholar
  86. LISEC (1998a) Alga, growth inhibition test effect of cadmium on the growth of Selenastrum capricornutum. Draft report. LISEC, Genk, Belgium.Google Scholar
  87. LISEC (1998b) Alga, growth inhibition test effect of cadmium oxide on the growth of Selenastrum capricornutum. Draft report. LISEC, Genk, Belgium, 22 p.Google Scholar
  88. Macfie SM, Tarmohamed Y, Welbourn PM (1994) Effect of cadmium, cobalt, copper and nickel on growth of the green alga Chlamydomonas reinhardtii: the influence of cell wall and pH. Arch Environ Contam Toxicol 27:454–458.Google Scholar
  89. Maeda S, Nizoguchi M, Ohki A, Takeshita T (1990) Bioaccumulation of zinc and cadmium in freshwater alga, Chlorella vulgaris. Part I. Toxicity and accumulation. Chemosphere 21:953–963.Google Scholar
  90. Manahan SE, Smith MJ (1973) Copper micronutrient requirement for algae. Environ Sci Technol 7:829.Google Scholar
  91. Mayer P, Frickmann J, Christensen ER, Nyholm N (1998) Influence of growth conditions on the results obtained in algal toxicity tests. Environ Toxicol Chem 17:1091–1098.Google Scholar
  92. Meijer CLC (1972) The effects of phosphate on the toxicity of copper for an alga (Chlamydomonas sp.). TNO 27:468–473.Google Scholar
  93. Miller WE, Greene JC, Shiroyama T (1978) The Selenastrum capricornutum Printz algal assay bottle test: experimental design, application, and data interpretation protocol. EPA-600/9-78-018. USEPA, Corvallis, OR.Google Scholar
  94. Millington LA, Goulding KH, Adams N (1988) The influence of growth medium composition on the toxicity of chemicals to algae. Water Res 22:1593–1597.Google Scholar
  95. Monahan JJ (1973) Lead inhibition of Hormotila blennista (Chlorophyceae, Chlorococcales). Phycologia 12:247–255.Google Scholar
  96. Morel FMM, Westall JC, Reuter JG, Chaplick JP (1975) Description of the algal growth media Aquil and Fraquil. R.M. Parsons Lab Tech Note 16. Massachusetts Institute of Technology, Cambridge.Google Scholar
  97. Morel FMM, Reuter JG, Anderson DM, Guillard RRL (1979) Aquil: a chemically defined phytoplankton culture medium for trace metal studies. J Phycol 15:135–141.Google Scholar
  98. Muyssen BTA, Janssen CR (2001) Zinc acclimation and its effects on the zinc tolerance of Raphidocelis subcapitata and Chlorella vulgaris in laboratory experiments. Chemosphere 45:507–514.PubMedGoogle Scholar
  99. Nalewajko C, Olaveson MM (1998) Ecophysiological considerations in microalgal toxicity tests. In: Wells PG, Lee K, Blaise C (eds) Microscale Testing in Aquatic Toxicology: Advances, Techniques and Practice. CRC Press, Boca Raton, FL, pp. 289–309.Google Scholar
  100. Nyholm N (1982) Evaluation of batch culture algal toxicity tests, with special reference to the proposed ISO draft method. ISO/TC 147/SC5/WG 5 N 70. Nederlands Normalisatie Instituut, Delft, The Netherlands.Google Scholar
  101. Nyholm N (1985) Response variable in algal growth inhibition tests—biomass or growth rate? Water Res 19:273–279.Google Scholar
  102. Nyholm N, Källqvist T (1989) Methods for growth inhibition toxicity tests with freshwater algae. Environ Toxicol 8:689–703.Google Scholar
  103. OECD (1984) Alga growth inhibition test. Test Guideline No. 201. OECD Guidelines for Testing of Chemicals. Organization for Economic Cooperation and Development, Paris.Google Scholar
  104. Parent L, Campbell PGC (1994) Aluminium bioavailability to the green alga Chlorella pyrenoidosa in acidified synthetic soft water. Environ Toxicol Chem 13:587–598.Google Scholar
  105. Parrish PR (1985) Acute toxicity tests. In: Rand GM, Petrocelli SR (eds) Fundamentals of Aquatic Toxicology. Hemisphere, Washington, DC.Google Scholar
  106. Petersen R (1982) Influence of copper and zinc on the growth of a freshwater alga Scenedesmus quadricauda—the significance of chemical speciation. Environ Sci Technol 16:443.Google Scholar
  107. Peterson HF, Healey FP (1985) Comparative pH dependent metal inhibition of nutrient uptake by Scenedesmus quadricauda (Chlorophyceae). J Phycol 21:217.Google Scholar
  108. Peterson HF, Healey FP, Wagemann R (1984) Metal toxicity to algae: a highly pH dependent phenomenon. Can J Fish Aquat Sci 41:974–979.Google Scholar
  109. Peterson HG (1991) Toxicity testing using a chemostat-grown green alga, Selenastrum capricornutum. In: Gorsuch JW, Lower WR, Wang W, Lewis Ma (eds) Plants for Toxicity Assessment. ASTM, Philadelphia, PA, pp 107–117.Google Scholar
  110. Pettersson JA, Kunst L, Bergman B, Roomans GM (1985) Accumulation of aluminium by Anabaena cylindrica into polyphosphate granules and cell walls; an X-ray energy dispersive microanalysis study. J Gen Microbiol 131:2545–2548.Google Scholar
  111. Price NM, Harrison GI, Hering JG, Hudson RJ, Nirel PVM, Palenik B, Morel FMM (1991) Preparation and chemistry of the artificial algal culture medium Aquil. Biol Oceanogr 6:443–461.Google Scholar
  112. Rai L, Gaur JP, Kumar HD (1981) Phycology and heavy-metal pollution. Biol Rev 56: 99–151.Google Scholar
  113. Rauser WE (1990) Phytochelatins. Annu Rev Biochem 59:61–86.PubMedGoogle Scholar
  114. Rhee G-Y (1972) Competition between an alga and an aquatic bacterium for phosphate. Limnol Oceanogr 17:505–512.Google Scholar
  115. Rhee G-Y (1973) A continuous culture study of phophate uptake, growth rate and polyphosphate in Scenedesmus sp. J Phycol 9:495–506.Google Scholar
  116. Riemer DN (1984) Introduction to Freshwater Vegetation. AVI, Westport, CT.Google Scholar
  117. Roberts MH, Warinner JE, Tsai CF, Wright D, Cronin LE (1982) Comparison of estuarine species sensitivities to three toxicants. Arch Environ Contam Toxicol 11:681–692.PubMedGoogle Scholar
  118. Rosko JJ, Rachlin JW (1977) The effect of cadmium, copper, mercury, zinc and lead on cell division and chlorophyll a content of the chlorophyte Chlorella vulgaris. Bull Torrey Bot Club 104:226–233.Google Scholar
  119. Sanders JG (1979) Effects of arsenic speciation and phosphate concentration on arsenic inhibition of Skeletonema costatum (Bacillariophyceae) J Phycol 15:424–428.Google Scholar
  120. Say PJ, Whitton BA (1977) Influence of zinc on lotic plants. II. Environmental effects on toxicity of zinc to Hormidium rivulare. Freshw Biol 7:357–376.Google Scholar
  121. Say PJ, Diaz BM, Whitton BA (1977) Influence of zinc on lotic plants. I. Tolerance of Hormidium species to zinc. Freshw Biol 7:357–376.Google Scholar
  122. Schenck RC, Tessier A, Campbell PGC (1988) The effect of pH on iron and manganese uptake by a green alga. Limnol Oceanogr 33:538.Google Scholar
  123. Sedlacek J, Källqvist T, Gjessing E (1983) Effect of aquatic humus on uptake and toxicity of cadmium to Selenastrum capricornutum Printz. In: Christman RF, Gjessing E (eds) Aquatic and Terrestrial Humic Materials. Ann Arbor Science, Ann Arbor, MI, pp 495–516.Google Scholar
  124. Silverberg BA, Stokes PM, Ferstenberg LB (1976) Intranuclear complexes in a coppertolerant green alga. J Cell Biol 69:210–214.PubMedGoogle Scholar
  125. Smith PD, Brockway DL, Stancil FE Jr (1987) Effect of hardness, alkalinity and pH on the toxicity of pentachlorophenol to Selenastrum capricornutum (Printz). Environ Toxicol Chem 6:891–900.Google Scholar
  126. Soldo D, Behra R (2000) Long-term effects of copper on the structure of freshwater periphyton communities and their tolerance to copper, zinc, nickel and silver. Aquat Toxicol 47:181–189.Google Scholar
  127. Spencer DF, Nichols LH (1983) Free nickel ion inhibits growth of two species of green algae. Environ Pollut A31:97.Google Scholar
  128. Starodub ME, Wong PTS, Mayfield CI (1987) Short term and long term studies on individual and combined toxicities of copper, zinc and leadc to Scenedesmus quadricauda. Sci Total Environ 63:101–110.Google Scholar
  129. Stauber JL, Florence TM (1989) The effect of culture medium on metal toxicity to the marine diatom Nitzschia closterium and the freshwater green alga Chlorella pyrenoidosa. Water Res 23:907–911.Google Scholar
  130. Steeman-Nielsen E, Kamp-Nielsen L (1970) Influence of deleterious concentrations of copper on the growth of Chlorella pyrenoidosa. Physiol Plant 27:239–242.Google Scholar
  131. Stein JR (1973) Handbook of Phycological Methods. Cambridge University Press, New York.Google Scholar
  132. Stockner JG, Antia NJ (1976) Phytoplankton adaptation to environmental stresses from toxicants, nutrients and pollutants—a warning. J Fish Res Board Can 33:2089–2096.Google Scholar
  133. Stokes PM, Dreier SI (1981) Copper requirement of a copper-tolerant isolate of Scenedesmus and the effect of copper depletion on tolerance. Can J Bot 59:1817–1823.Google Scholar
  134. Thursby GB, Steele RL (1995) Sexual reproduction tests with marine seaweeds. In: Rand GM (ed) Fundamentals of Aquatic Toxicology, 2nd Ed. Taylor and Francis, Washington, DC, pp 171–188.Google Scholar
  135. Thursby GB, Anderson FB, Walsh GE, Steele RL (1993) A review of the current status of marine algal testing in the United States. In: Landis WG, Hughes JS, Lewis MA (eds) First Symposium on Environmental Toxicology and Risk Assessment. ASTM STP 1179. American Society for Testing and Materials, Philadelphia, PA, pp 362–377.Google Scholar
  136. Tipping E (1994) WHAM—a chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comp Geosci 20:973–1023.Google Scholar
  137. Turbak SC, Olson SB, McFeters GA (1986) Comparison of algal assay systems for detecting waterborne herbicides and metals. Water Res 20:91–96.Google Scholar
  138. Twiss MR, Nalewajko C (1992) Influence of phosphorus-nutrition on copper toxicity to 3 strains of Scenedesmus acutus (Chlorophyceae). J Phycol 28:291–298.Google Scholar
  139. Ukeles R (1976) Cultivation of plants. In: Kinne O (ed) Marine Ecology, vol III. Wiley, New York, pp 367–529.Google Scholar
  140. USEPA (1971) Algal Assay Procedure Bottle Test. National Eutrophication Research Program. Pacific Northwest Environmental Research Laboratory, Corvallis, OR.Google Scholar
  141. USEPA (1978) The Selenastrum capricornutum Printz Algal Assay Bottle Test. EPA-600/9-78-018. U.S. Environmental Protection Agency, Washington, DC.Google Scholar
  142. USEPA (1980) Ambient Water Quality Criteria for Zinc. EPA 440/5-80-079. Environmental Protection Agency, Washington, DC.Google Scholar
  143. USEPA (1985) Toxic Substances Control Act Test Guidelines; final rules. Fed Reg 50, 797. 1050, 797.1075, 797.1060.Google Scholar
  144. USEPA (1991) Methods for Aquatic Toxicity Identification Evaluations. Phase I Toxicity Characteristation Procedures (Second Edition). EPA/600/6-91/003. U.S. Environmental Protection Agency, Washington, DC.Google Scholar
  145. Van Ginneken I (1994) The effect of zinc oxide on the growth of the unicellular alga Selenastrum capricornutum. Report AFBr/0024. Janssen Pharmaceautica N.V., Beerse, Belgium.Google Scholar
  146. Van Woensel M (1994) The effect of zinc powder on the growth of the unicellular alga Selenastrum capricornutum. Report AASc/0021. Janssen Pharmaceutica N.V., Beerse, Belgium.Google Scholar
  147. Vasseur P, Pandard P (1988) Influence of some experimental factors on metal toxicity to Selenastrum capricornutum. Toxic Assess 3:331–343.Google Scholar
  148. Vocke RW, Sears KL, O’Toole JJ, Wildman RB (1980) Growth responses of selected freshwater algae to trace elements and scrubber ash slurry generated by coal-fired power plants. Water Res 14:141–150.Google Scholar
  149. Walsh GE (1982) Algal Bioassay of Industrial and Energy Process Effluents. EPA 600/ D-82-141. USEPA, Gulf Breeze, FL.Google Scholar
  150. Walsh GE (1988) Principles of toxicity testing with marine unicellular algae. Environ Toxicol Chem 7:979–987.Google Scholar
  151. Walsh GE, Deans CH, McLaughlin LL (1987a) Comparison of the EC50s of algal toxicity tests calculated by four methods. Environ Toxicol Chem 6:767–770.Google Scholar
  152. Walsh GE, Yoder MJ, McLaughlin LL, Lores EM (1987b) Responses of marine unicellular algae to brominated organic compounds in six growth media. Ecotoxicol Environ Saf 14:215–222.PubMedGoogle Scholar
  153. Wangberg S, Blanck H (1988) Multivariate patterns of algal sensitivity to chemicals in relation to phylogeny. Ecotoxicol Environ Saf 16:72–82.PubMedGoogle Scholar
  154. Weber C, Horning WB, Klemm DJ, Neiheisel TW, Lewis PA, Robinson E, Menkendick JR, Kessler FA (1988) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. EPA 600/4-876/028. Environmental Montoring Support Laboratory, Cincinnati, OH.Google Scholar
  155. Weber CI, Peltier WH, Norberg-King TJ, Horning WB, Kessler FA, Menkendick JR, Neiheisel TW, Lewis PA, Klemm DJ, Pickering QH, Robinson EL, Lazorchak JL, Wymer LJ, Freyberg RW (1989) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. USEPA 600/4-89/001. Environmental Monitoring Systems Laboratory, Cincinnati, OH.Google Scholar
  156. Wolterbeek HT, Viragh A, Sloof JE, Bolier G, van der Veer B, de Kok J (1995) On the uptake and release of zinc (65Zn) in the growing alga Selenastrum capricornutum Printz. Environ Pollut 88:85–90.PubMedGoogle Scholar
  157. Wong PTS, Burnison G, Chau YK (1979) Cadmium toxicity to freshwater algae. Bull Environ Contam Toxicol 23:487–490.PubMedGoogle Scholar
  158. Wren MJ, McCaroll D (1990) A simple and sensitive bioassay for the detection of toxic materials using a unicellular green alga. Environ Pollut 64:87–91.PubMedGoogle Scholar
  159. Xue H-B, Stumm W, Sigg L (1988) The binding of heavy metals to algal surfaces. Water Res 7:917–926.Google Scholar
  160. Yamane AN, Okada M, Sudo R (1984) The growth inhibition of plankton algae due to surfactants used in washing agents. Water Res 18:1101–1105.Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Colin R. Janssen
    • 1
  • Dagobert G. Heijerick
    • 2
  1. 1.Laboratory of Environmental Toxicology and Aquatic EcologyGhent UniversityGhentBelgium
  2. 2.EURASZwijnaardeBelgium

Personalised recommendations