After general comments on the relevance of field theory to condensed matter systems, the continuum description of interacting electrons in 1D is summarized. The bosonization procedure is then introduced heuristically, but the precise quantum equivalence between fermion and boson is also presented. Then the exact solution of the Tomonaga-Luttinger model is carried out. Two other applications of bosonization are then sketched. We end with a quick introduction to non-Abelian bosonization.


Renormalization Group Vertex Operator Mode Expansion Luttinger Liquid Free Boson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10 References

  1. [1]
    M. Stone, ed., Bosonization, World Scientific, Singapore, 1994, a collection of reprints.Google Scholar
  2. [2]
    I. Affleck, in Fields, Strings and Critical Phenomena, eds. E. Brézin and J. Zinn-Justin (Elsevier, Amsterdam, 1989), p. 564.Google Scholar
  3. [3]
    J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge Lecture Notes Phys. (Cambridge University Press, Cambridge, 1996). (See particularly Section 5.2 for a discussion of the perturbative Renormalization Group.)Google Scholar
  4. [4]
    A. Gogolin, A. Nersesyan, and A. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, Cambridge, 1998).Google Scholar
  5. [5]
    D. Allen and D. Sénéchal, Phys. Rev. B 55 (1997), 299.CrossRefADSGoogle Scholar
  6. [6]
    P. Ginsparg, Nuclear Phys. B 295 (1988), 153–170.CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    P.D. Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory (Springer Verlag, New York, 1997). (See also the errata page at Scholar
  8. [8]
    P. Ginsparg, in Fields, Strings and Critical Phenomena, eds. E. Brézin and J. Zinn-Justin (Elsevier, Amsterdam, 1989).Google Scholar
  9. [9]
    J. Kosterlitz and D. Thouless, J. Phys. C: Solid State Phys. 6 (1973), 1181.CrossRefADSGoogle Scholar
  10. [10]
    A. Luther and V. Emery, Phys. Rev. Lett. 33 (1974), 589.CrossRefADSGoogle Scholar
  11. [11]
    E. Witten, Comm. Math. Phys. 92 (1984), 455–472.CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. [12]
    A. Zamolodchikov and V. Fateev, Sov. J. Nuclear Phys. 43 (1986), 657.Google Scholar
  13. [13]
    A. Tsvelik, Phys. Rev. B 42 (1990), 10499.CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    D. Shelton and D. Sénéchal, Phys. Rev. B 58 (1998), 6818.CrossRefADSGoogle Scholar
  15. [15]
    X.-G. Wen, Internat. J. Modern Phys. B 6 (1992), 1711–1762.CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    H. Schulz, G. Cuniberti, and P. Pieri, Fermi Liquids and Luttinger Liquids, Lecture Notes of the Chia Laguna (Italy), Summer School, September 1997, cond-mat/9807366.Google Scholar
  17. [17]
    C. Kane and M. Fisher, Phys. Rev. B 46 (1992), 1220.CrossRefGoogle Scholar
  18. [18]
    I. Affleck, Acta Phys. Polon. B 26 (1995), 1869, cond-mat/9512099.zbMATHMathSciNetGoogle Scholar
  19. [19]
    I. Affleck and F. Haldane, Phys. Rev. B 36 (1987), 5291.CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    M. Fabrizio, Phys. Rev. B 48 (1993), 15838.CrossRefADSGoogle Scholar
  21. [21]
    H. Schulz, Phys. Rev. B 53 (1996), R2959.CrossRefADSGoogle Scholar
  22. [22]
    H. Schulz, Phys. Rev. Lett. 64 (1990), 2831.CrossRefADSGoogle Scholar
  23. [23]
    N. Kawakami and S.-K. Yang, Prog. Theoret. Phys. 107 (1992), 59.MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    F. Haldane, in Perspectives in Many-Particle Physics, eds. R. Broglia and J.R. Schrieffer, (North Holland, Amsterdam 1994).Google Scholar
  25. [25]
    H.-J. Kwon, A. Houghton, and B. Marston, Phys. Rev. B 52 (1995), 8002.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • D. Sénéchal

There are no affiliations available

Personalised recommendations