DNA-Chip Analyzer (dChip)

  • Cheng Li
  • Wing Hung Wong
Part of the Statistics for Biology and Health book series (SBH)


DNA-Chip Analyzer (dChip) is a software package implementing model-based expression analysis of oligonucleotide arrays and several high-level analysis procedures. The model-based approach allows probe-level analysis on multiple arrays. By pooling information across multiple arrays, it is possible to assess standard errors for the expression indexes. This approach also allows automatic probe selection in the analysis stage to reduce errors due to cross-hybridizing probes and image contamination. High-level analysis in dChip includes comparative analysis and hierarchical clustering. The software is freely available to academic users at


Linear Discriminant Analysis Probe Outlier Oligonucleotide Array Large Standard Error Array Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Affymetrix, Inc. (2001). Microarray Suite 5.0, Affymetrix, Inc.: Santa Clara, CA.Google Scholar
  2. Cho RJ, Huang M, Campbell MJ, Dong H, Steinmetz L, Sapinoso L, Hampton G, Elledge SJ, Davis RW, Lockhart DJ (2001). Transcriptional regulation and function during the human cell cycle. Nature Genetics, 27:48–54.Google Scholar
  3. Cox, DR, Hinkley DV (1974). Theoretical Statistics. Chapman and Hall: London.CrossRefzbMATHGoogle Scholar
  4. Dudoit S, Fridlyand J, Speed TP (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97(457):77–87.CrossRefzbMATHMathSciNetGoogle Scholar
  5. Eisen MB, Spellman PT, Brown PO, Botstein D (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences USA, 95:14863–14868.CrossRefGoogle Scholar
  6. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, Haroutunian V, Fienberg AA (2001). Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proceedings of the National Academy of Sciences USA, 98:4746–4751.CrossRefGoogle Scholar
  7. Hill AA, Brown EL, Whitley MZ, Tucker-Kellogg G, Hunter GP, Slonim DK (2001). Evaluation of normalization procedures for oligonucleotide array data based on spiked cRNA controls. Genome Biology, 2(12):research0055.1–0055.13.Google Scholar
  8. Hoffmann R, Seidl T, Dugas M (2002). Profound effect of normalization on detection of differentially expressed genes in oligonucleotide microarray data analysis. Genome Biology, 3(7):research0033.1–0033.11.Google Scholar
  9. Holder D, Raubertas RF, Pikounis VB, Svetnkik V, Soper K (2001). Statistical analysis of high density oligonucleotide arrays: A SAFER approach. Proceedings of the American Statistical Association.Google Scholar
  10. Ihaka R, Gentleman R (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3):299–314.Google Scholar
  11. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed T (in press). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics.Google Scholar
  12. Lazaridis EN, Sinibaldi D, Bloom G, Mane S, Jove R (2002). A simple method to improve probe set estimates from oligonucleotide arrays. Mathematical Biosciences, 176(1):53–58.CrossRefzbMATHMathSciNetGoogle Scholar
  13. Li C, Wong WH (2001a). Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proceedings of the National Academy of Sciences USA, 98:31–36.CrossRefzbMATHGoogle Scholar
  14. Li C, Wong WH (2001b). Model-based analysis of oligonucleotide arrays: Model validation, design issues and standard error application. Genome Biology, 2(8): research0032.1–0032.11.Google Scholar
  15. Lipshutz RJ, Fodor S, Gingeras T, Lockhart D (1999). High density synthetic ologonucleotide arrays. Nature Genetics Supplement, 21:20–24.CrossRefGoogle Scholar
  16. Lockhart D, Dong H, Byrne M, Follettie M, Gallo M, Chee M, Mittmann M, Wang C, Kobayashi M, Horton H, Brown E (1996). Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnology, 14:1675–1680.CrossRefGoogle Scholar
  17. Schadt EE, Li C, Su C, Wong WH (2001). Analyzing high-density oligonucleotide gene expression array data. Journal Cellular Biochemistry, 80:192–202.CrossRefGoogle Scholar
  18. Schadt EE, Li C, Ellis B, Wong WH (2002). Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. Journal of Cellular Biochemistry, 84(S37):120–125.CrossRefGoogle Scholar
  19. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM (1999). Systematic determination of genetic network architecture. Nature Genetics, 22:281–285.CrossRefGoogle Scholar
  20. Wallace D (1988). The Behrens-Fisher and Fieller-Creasy Problems. In: Fienberg SE, Hinkley DV (eds) R.A. Fisher: An Appreciation. pp.119–117. Lecture Notes in Statistics, Volume 1, Springer-Verlag: New York.Google Scholar
  21. Zhou Y, Abagyan R (2002). Match-only integral distribution (MOID) algorithm for high-density oligonucleotide array analysis. BMC Bioinformatics, 3:3.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  • Cheng Li
  • Wing Hung Wong

There are no affiliations available

Personalised recommendations