MAANOVA: A Software Package for the Analysis of Spotted cDNA Microarray Experiments

  • Hao Wu
  • M. Kathleen Kerr
  • Xiangqin Cui
  • Gary A. Churchill

Abstract

We describe a software package called MAANOVA (MicroArray ANalysis Of VAriance). MAANOVA is a collection of functions for statistical analysis of gene expression data from two-color cDNA microarray experiments. It is available in both the Matlab and R programming environments and can be run on any platform that supports these packages. MAANOVA allows the user to assess data quality, apply data transformations, estimate relative gene expression from designed experiments with ANOVA models, evaluate and interpret ANOVA models, formally test for differential expression of genes and estimate false-discovery rates, produce graphical summaries of expression patterns, and perform cluster analysis with bootstrapping. The development of MAANOVA was motivated by the need to analyze microarray data that arise from sophisticated designed experiments. MAANOVA provides specialized functions for microarray analysis in an open-ended format within flexible computing environments. MAANOVA functions can be used alone or in co mbination with other functions for the rigorous statistical analysis of microarray data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldi P, Long AD (2001). A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes. Bioinformatics, 17:509.CrossRefGoogle Scholar
  2. Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: A practical and powerful approach to multiple-testing. Journal of the Royal Statistical Society, Series B, 57:289.MATHMathSciNetGoogle Scholar
  3. Callow MJ, Dudoit S, Gong EL, Speed TP, Rubin E (2000). Microarray expression profiling identifies genes with altered expression in HDL deficient mice. Genome Research, 10:2022.CrossRefGoogle Scholar
  4. Chu S, DeRisi J, Eisen M, Mullholland J, Botstein D, Brown PO (1998). Science, 282:699.CrossRefGoogle Scholar
  5. Cui XQ, Kerr MK, Churchill GA (submitted for publication). Data transformations for normalization of cDNA microarray data.Google Scholar
  6. Dudoit S, Yang YH, Speed TP, Callow MJ (2002). Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica, 12:111–139.MATHMathSciNetGoogle Scholar
  7. Felsenstein J (1985). Confidence limits on phylogenies—An approach using the bootstrap. Evolution 39:783.CrossRefGoogle Scholar
  8. Jin W, Riley RM, Wolfinger RD, White KP, Passador-Gurgel G, Gibson G (2001). The contribution of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genetics, 29:389.CrossRefGoogle Scholar
  9. Kerr MK, Churchill GA (2001a). Experimental design for gene expression microarrays. Biostatistics, 2:183.CrossRefMATHGoogle Scholar
  10. Kerr MK, Churchill GA (2001b). Statistical design and the analysis of gene expression microarray data. Genetical Research, 77:123.Google Scholar
  11. Kerr MK, Churchill GA (2001c). Bootstrapping cluster analysis: Assessing the reliability of conclusion from microarray experiments. Proceedings of the National Academy of Sciences USA, 98:8961.CrossRefMATHGoogle Scholar
  12. Kerr MK, Martin, M., Churchill GA (2000). Analysis of variance for gene expression microarray data. Journal of Computational Biology, 7:819.CrossRefGoogle Scholar
  13. Kerr MK, Leiter EH, Picard L, Churchill GA (2002). Sources of variation in microarray experiments. In: Computational and Statistical Approaches to Genomics, Zhang I, Shmulevich I (Eds), p 41. Kluwer Academic Publishers: Amsterdam.Google Scholar
  14. Lönnstedt I, Speed TP (2002). Replicated microarray data. Statistica Sinica, 12:31.MATHMathSciNetGoogle Scholar
  15. Margush T, McMorris FR (1981). Consensus n-trees. Bulletin of Mathematical Biology, 43:239.MATHMathSciNetGoogle Scholar
  16. Pritchard CC, Hsu L, Delrow J, Nelson PS (2001). Project normal: Defining normal variation in mouse gene expression Proceedings of the National Academy of Sciences USA, 98:13266.CrossRefGoogle Scholar
  17. Rocke DM, Durbin B (2001). A model for measurement error for gene expression arrays. Journal of Computational Biology, 8:557.CrossRefGoogle Scholar
  18. Schena M (Ed) (2000). DNA Microarrays: A Practical Approach. Practical Approach Series 205. Oxford University Press: Oxford.Google Scholar
  19. Seber GAF (1977). Linear Regression Analysis. Wiley: New York.MATHGoogle Scholar
  20. Tanner JM (1949). Fallacy of per-weight and per-surface area standards, and their relation to spurious correlations. Journal of Applied Physiology, 2:1.Google Scholar
  21. Tusher VG, Tibshirani R, Chu G (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences USA, 98:5116.CrossRefMATHGoogle Scholar
  22. Westfall PH, Young SS (1993). Resampling-based multiple testing: Examples and methods for p-value adjustment. Wiley Series in Probability and Mathematical Statistics, Wiley: New York.Google Scholar
  23. Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, Ashfari C, Paules RS (2001). Assessing gene significance from cDNA microarray expression data via mixed-models. Journal of Computational Biology, 8:625.CrossRefGoogle Scholar
  24. Yang YH, Buckley MJ, Dudoit S, Speed TP (2002). Comparison of methods for image analysis on cDNA microarray data. Journal of Computational Graph Statistics, 11:108.CrossRefMathSciNetGoogle Scholar
  25. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP. (2001). Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30:e15.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  • Hao Wu
  • M. Kathleen Kerr
  • Xiangqin Cui
  • Gary A. Churchill

There are no affiliations available

Personalised recommendations