Advertisement

Biomechanics of the Semicircular Canals and Otolith Organs

  • Richard D. Rabbitt
  • Edward R. Damiano
  • J. Wallace Grant
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 19)

Keywords

Hair Cell Semicircular Canal Angular Acceleration Sensory Epithelium Hair Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Art JJ, Fettiplace R (1984) Efferent desensitization of auditory nerve fibre responses in the cochlea of the turtle Pseudemys scripta elegans. J Physiol 356: 507–523.PubMedGoogle Scholar
  2. Art JJ, Crawford AC, Fettiplace R, Fuchs PA (1985) Efferent modulation of hair cell tuning in the cochlea of the turtle. J Physiol 360:397–421.PubMedGoogle Scholar
  3. Art JJ, Wu YC, Fettiplace R (1995) The calcium-activated potassium channels of turtle hair cells. J Gen Physiol 105:49–72.PubMedCrossRefGoogle Scholar
  4. Assad JA, Shepherd GM, Corey DP (1991) Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7:985–994.PubMedCrossRefGoogle Scholar
  5. Benser ME, Marquis RE, Hudspeth AJ (1996) Rapid, active hair bundle movements in hair cells from the bullfrog’s sacculus. J Neurosci 16:5629–5643.PubMedGoogle Scholar
  6. Blanks RHI, Curthoys IS, Bennett ML, Markham CH (1985) Planar relationships of the semicircular canals in rhesus and squirrel monkeys. Brain Res 340: 315–324.PubMedCrossRefGoogle Scholar
  7. Boyle R, Highstein SM (1990) Resting discharge and response dynamics of horizontal semicircular canal afferents of the toadfish, Opsanus tau. J Neurosci 10:1557–1569.PubMedGoogle Scholar
  8. Breuer J (1874) Uber die funktion der bogengange des ohrlabyrinthes. Med Jahrb (Wien) 4:72–124.Google Scholar
  9. Brownell WE (1982) Cochlear transduction: an integrative model and review. Hear Res 6:335–360.PubMedCrossRefGoogle Scholar
  10. Brownell WE (1990) Outer hair cell electromotility and otoacoustic emissions. Ear Hear 11:82–92.PubMedCrossRefGoogle Scholar
  11. Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cell. Science 227:194–196.PubMedGoogle Scholar
  12. Burns EM, Keefe DH, Ling R (1998) Energy reflectance in the ear canal can exceed unity near spontaneous otoacoustic emission frequencies. J Acoust Soc Am 103:462–474.PubMedGoogle Scholar
  13. Camis M (1930) The Physiology of the Vestibular Apparatus. Oxford: Clarendon Press.Google Scholar
  14. Carlström D (1963) Crystallographic study of the vertebrate otoliths. Biol Bull 125:441–463.Google Scholar
  15. Corey DP, Garcia-Añoveros J (1996) Mechanosensation and the deg/enac ion channels. Science 273:323–324.PubMedGoogle Scholar
  16. Cotton JR (1998) Mechanical models of vestibular hair cell bundles. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.Google Scholar
  17. Cotton JR, Grant JW (2000) A finite element method for mechanical response of hair cell ciliary bundles. J Biomech Eng 144:44–50.Google Scholar
  18. Crawford JJ, Art AC, Fettiplace R, Fuchs PA (1982) Efferent regulation of hair cells in the turtle cochlea. Proc R Soc Lond B Biol Sci 216:377–384.PubMedGoogle Scholar
  19. Cremer PD, Minor LB, Carey JP, Della Santina CC (2000) Eye movements in patients with superior canal dehiscence syndrome align with the abnormal canal. Neurology 55:1833–1841.PubMedGoogle Scholar
  20. Crum-Brown A (1874) On the sense of rotation and the anatomy and physiology of the semicircular canals of the inner ear. J Anat Physiol 8:327–331.Google Scholar
  21. Curthoys IS, Oman CM (1987) Dimensions of the horizontal semicircular duct, ampulla and utricle in the human. Acta Otolaryngol (Stockh) 103:254–261.Google Scholar
  22. Curthoys IS, Markham CH, Curthoys EJ (1977) Semicircular canal duct and ampulla dimensions in cat, guinea pig and man. J Morphol 151:17–34.PubMedGoogle Scholar
  23. Dallos P, He DZ, Lin X, Sziklai I, Mehta S, Evans BN (1997) Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. J Neurosci 17:2212–2226.PubMedGoogle Scholar
  24. Damiano ER (1999) A poroelastic continuum model of the cupula partition and the response dynamics of the vestibular semicircular canal. J Biomech Eng 121: 449–461.PubMedGoogle Scholar
  25. Damiano ER, Rabbitt RD (1996) A singular perturbation model for fluid dynamics in the vestibular semicircular canal and ampulla. J Fluid Mech 307:333–372.Google Scholar
  26. Denk W, Holt JR, Shepherd GM, Corey DP (1995) Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron 15:1311–1321.PubMedCrossRefGoogle Scholar
  27. De Vries HL (1950) Mechanics of the labyrinth organs. Acta Otolaryngol 38:262–273.Google Scholar
  28. Dickman JD (1996) Spatial orientation of semicircular canals and afferent sensitivity vectors in pigeons. Exp Brain Res 111:8–20.PubMedCrossRefGoogle Scholar
  29. Dohlman GF (1971) The attachment of the cupula, otolith and tectorial membranes to the sensory cell areas. Acta Otolaryngol 71:89–105.PubMedGoogle Scholar
  30. Dolgobrodov SG, Lukashkin AN, Russell IJ (2000a) Electrostatic interaction between stereocilia: I. Its role in supporting the structure of the hair bundle. Hear Res 150:94–103.PubMedGoogle Scholar
  31. Dolgobrodov SG, Lukashkin AN, Russell IJ (2000b) Electrostatic interaction between stereocilia: II. Influence on the mechanical properties of the hair bundle. Hear Res 150:273–285.Google Scholar
  32. Duncan RK, Grant JW (1987) A finite element model of inner ear hair bundle micromechanics. Hear Res 104:15–26.Google Scholar
  33. Duncan RK, Eisen MD, Saunders JC (1999) Distal separation of chick cochlear hair cell stereocilia: analysis of contact-constraint models. Hear Res 127:22–30.PubMedCrossRefGoogle Scholar
  34. Eatock RA (2000) Adaptation in hair cells. Annu Rev Neurosci 23:285–314.PubMedCrossRefGoogle Scholar
  35. Eatock RA, Corey DP, Hudspeth AJ (1987) Adaptation of mechanoelectrical transduction in hair cells of the bullfrog’s sacculus. J Neurosci 7:2821–2836.PubMedGoogle Scholar
  36. Engström H, Lindeman HH, Ades HW (1966) Anatomical features of the auricular sensory organs. In: Second Symposium on the Role of the Vestibular Organs in Space Exploration, SP-115. Moffett Field, CA: NASA Ames Research Center, pp. 33–46.Google Scholar
  37. Estes MS, Blanks RHI, Markham CH (1975) Physiologic characteristics of vestibular first-order neurons in the cat. I. Response plane determination and resting discharge characteristics. J Neurophysiol 38:1239–1249.Google Scholar
  38. Ezure K, Graf W (1984) A quantitative analysis of the spatial organization of the vestibuloocular reflexes in lateral-and frontal-eyed animals. I. Orientation of semicircular canals and extraocular muscles. Neuroscience 12:85–93.PubMedGoogle Scholar
  39. Fay RR, Edds-Walton PL (1997) Directional response properties of saccular afferents of the toadfish, Opsanus tau. Hear Res 111:1–21.PubMedCrossRefGoogle Scholar
  40. Fernández C, Goldberg JM ((1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34:661–675.PubMedGoogle Scholar
  41. Fernández C, Goldberg JM (1976a) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J Neurophysiol 39:970–984.PubMedGoogle Scholar
  42. Fernández C, Goldberg JM (1976b) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. J Neurophysiol 39:985–995.PubMedGoogle Scholar
  43. Freeman DM, Abnet CC (2000) Deformation of the isolated mouse tectorial membrane produced by oscillatory forces. Hear Res 144:29–46.PubMedGoogle Scholar
  44. Freeman DM, Weiss TF (1990a) Hydrodynamic forces on hair bundles at low frequencies. Hear Res 48:17–30.PubMedGoogle Scholar
  45. Freeman DM, Weiss TF (1990b) Hydrodynamic forces on hair bundles at high frequencies. Hear Res 48:31–36.PubMedGoogle Scholar
  46. Fuchs PA, Evans MG (1988) Voltage oscillations and ionic conductances in hair cells isolated from the alligator cochlea. J Comp Physiol 164:151–163.CrossRefGoogle Scholar
  47. Garcia JA, Yee AG, Gillespie PG, Corey DP (1998) Localization of myosin-i beta near both ends of tip links in frog saccular hair cells. J Neurosci 18:8637–8647.PubMedGoogle Scholar
  48. Ghanem TA (2002) Semicircular canal fluid compartment morphology, ionic composition and regulation in the oyster toadfish, Opsanus tau. Ph.D. Thesis, University of Utah, Salt Lake City, UT.Google Scholar
  49. Ghanem TA, Rabbitt RD, Tresco PA (1998) Three-dimensional reconstruction of the membranous vestibular labyrinth in the toadfish, Opsanus tau. Hear Res 124:27–43.PubMedCrossRefGoogle Scholar
  50. Gillespie PG, Corey DP (1997) Myosin and adaptation by hair cells. Neuron 19:8637–8647.CrossRefGoogle Scholar
  51. Gillespie PG, Wagner MC, Hudspeth AJ (1993) Identification of a 120 kd hairbundle myosin located near stereociliary tips. Neuron 11:581–594.PubMedCrossRefGoogle Scholar
  52. Goldberg JM, Desmadryl G, Baird RA, Fernández C (1990) The vestibular nerve of the chinchilla. V. Peripheral relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. J Neurophysiol 63: 791–804.PubMedGoogle Scholar
  53. Goldberg JM, Lysakowski A, Fernández C (1992) Structure and function of the vestibular nerve fibers in the chinchilla and squirrel monkey. Ann N Y Acad Sci 656:93–107.Google Scholar
  54. Goodman MB, Art JJ (1996a) Positive feedback by a potassium-selective inward rectifier enhances tuning in vertebrate hair cells. Biophys J 72:430–442.Google Scholar
  55. Goodman MB, Art JJ (1996b) Variations in the ensemble of potassium currents underlying resonance in turtle hair cells. J Physiol 497:395–412.PubMedGoogle Scholar
  56. Grant JW, Cotton JR (1991) A model for otolith dynamic response with viscoelastic gel layer. J Vestib Res 1:139–151.Google Scholar
  57. Grant JW, Huang CC, Cotton JR (1994) Theoretical mechanical frequency response of the otolithic organs. J Vestib Res 4:137–151.PubMedGoogle Scholar
  58. Gray AA (1907) The Labyrinth of Animals. London: J. and A. Churchill.Google Scholar
  59. Gray AA (1908) The Labyrinth of Animals. London: J. and A. Churchill.Google Scholar
  60. He DZ, Dallos P (1999) Development of acetylcholine-induced responses in neonatal gerbil outer hair cells. J Neurophysiol 81:1162–1170.PubMedGoogle Scholar
  61. Helling K, Clarke AH, Watanabe N, Scherer H (2000) Morphological studies of the form of the cupula in the semicircular canal ampulla. HNO 48:822–827.PubMedCrossRefGoogle Scholar
  62. Hess BJ, Lysakowski A, Minor LB, Angelaki DE (2000) Central versus peripheral origin of vestibulo-ocular reflex recovery flowing semicircular canal plugging in rhesus monkeys. J Neurophysiol 84:3078–3082.PubMedGoogle Scholar
  63. Highstein SM, Rabbitt RD, Boyle R (1996) Determinants of semicircular canal affe ent response dynamics in the toadfish, Opsanus tau. J Neurophysiol 75:575–596.PubMedGoogle Scholar
  64. Hillman DE, Lewis ER (1971) Morphological basis for a mechanical linkage in otolithic receptor transduction in the frog. Science 174:416–418.PubMedGoogle Scholar
  65. Hillman DE, McLaren JW (1979) Displacement configuration of semicircular canal cupulae. Neuroscience 4:1989–2000.PubMedCrossRefGoogle Scholar
  66. Hocohen N, Assad JA, Smith WJ, Corey DP (1989) Regulation of tension on hair-cell transduction channels: displacement and calcium dependence. J Neurosci 9:3988–3997.Google Scholar
  67. Holt JR, Corey DP (2000) Two mechanisms for transducer adaptation in vertebrate hair cells. Proc Natl Acad Sci U S A 97:11730–11735.PubMedCrossRefGoogle Scholar
  68. Holt JR, Corey DP, Eatock RA (1997) Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ. J Neurosci 17:8739–8748.PubMedGoogle Scholar
  69. Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404.PubMedCrossRefGoogle Scholar
  70. Hudspeth AJ, Gillespie PG (1994) Pulling springs to tune transduction: adaptation by hair cells. Neuron 12:1–9.PubMedCrossRefGoogle Scholar
  71. Hudspeth AJ, Logothetis NK (2000) Sensory systems. Curr Opin Neurobiol 10:631–641.PubMedCrossRefGoogle Scholar
  72. Igarashi M (1966) Dimensional study of the vestibular end organ apparatus. In: Second Symposium on the Role of the Vestibular Organs in Space Exploration, SP-115. Moffett Field, CA: NASA Ames Research Center, pp. 47–54.Google Scholar
  73. Igarashi M (1967) Dimensional study of the vestibular apparatus. Laryngoscope 77:1806–1817.PubMedGoogle Scholar
  74. Igarashi M, O-Uchi T, Alford BR (1981) Volumetric and dimensional measurements of vestibular structures in the squirrel monkey. Acta Otolaryngol 91:437–444.PubMedGoogle Scholar
  75. Jaeger R, Takagi A, Haslwanter T (2002) Modeling the relation between head orientations and otolith responses in humans. Hear Res 173:29–42.PubMedCrossRefGoogle Scholar
  76. Jaramillo F, Hudspeth AJ (1993) Displacement-clamp measurements of the forces exerted by gating springs in the hair bundle. Proc Natl Acad Sci USA 90:1330–1334.PubMedGoogle Scholar
  77. Kachar B, Parakkal M, Fex J (1990) Structural basis for mechanical transduction in the frog vestibular sensory apparatus. I. The otolithic membrane. Hear Res 45:179–190.PubMedCrossRefGoogle Scholar
  78. Kachar B, Parakkal M, Kurc M, Zhao Y, Gillespie PG (2000) High-resolution structure of hair-cell tip links. Proc Natl Acad Sci U S A 97:13336–13341.PubMedCrossRefGoogle Scholar
  79. Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391.PubMedCrossRefGoogle Scholar
  80. Kondrachuk AV (2001a) Finite element modeling of the 3d otolith structure. J Vestib Res 11:13–32.PubMedGoogle Scholar
  81. Kondrachuk AV (2001b) Models of the dynamics of otolithic membrane and hair cell bundle mechanics. J Vestib Res 11:33–42.PubMedGoogle Scholar
  82. Konishi T (1982) Ion and water control in cochlear endolymph. Am J Otolaryngol 3:434–443.PubMedGoogle Scholar
  83. Kurc M, Farina M, Linus U, Kachar B (1999) Structural basis for mechanical transduction in the frog vestibular sensory apparatus. I. The organization of the otoconial mass. Hear Res 131:11–21.PubMedCrossRefGoogle Scholar
  84. Lim DJ (1971) Vestibular sensory organs. A scanning electron microscopic investigation. Arch Otolaryngol 94:69–76.PubMedGoogle Scholar
  85. Lim DJ (1973) Ultrastructure of the otolithic membrane and the cupula. A scanning electron microscopic observation. Adv Otorhinolaryngol 19:35–49.PubMedGoogle Scholar
  86. Lim DJ (1979) Fine morphology of the otoconial membrane and its relationship to the sensory epithelium. Scanning Electron Microsc 3:929–938.Google Scholar
  87. Lim DJ (1984) The development and structure of the otoconia. In: Friedmann I, Ballantine J (eds) Ultrastructural Atlas of the Inner Ear. London: Butterworths.Google Scholar
  88. Lim DJ, Anniko M (1985) Developmental morphology of the mouse inner ear. A scanning electron microscopic observation. Acta Otolaryngol Suppl 422:1–69.PubMedGoogle Scholar
  89. Lins U, Farina M, Kurc M, Riordan G, Thalmann R, Thalmann I, Kachar B (2000) The otoconia of the guinea pig utricle: internal structure, surface exposure, and interactions with the filament matrix. J Struct Biol 131:67–78.PubMedCrossRefGoogle Scholar
  90. Lonsbury-Martin BL, Harris FP, Stagner BB, Hawkin MD, Martin GK (1990) Distortion-product emissions in humans. I. Basic properties in normally hearing subjects. Ann Otol Rhinol Laryngol 99:3–42.Google Scholar
  91. Lorente de Nó R (1927) Contribucion al estudio matematico del organo del equilibrio. Trab Publ En La 7:202–206.Google Scholar
  92. Lowenstein O, Saunders RD (1975) Otolith-controlled response from the first order neurons of the labyrinth of the bullfrog to changes in linear acceleration. Proc R Soc Lond B Biol Sci 191:475–505.PubMedGoogle Scholar
  93. Ludwig J, Oliver D, Frank G, Llocker N, Gummer WW, Fakler B (2001) Reciprocal electromechanical properties of rat prestin: the motor molecule from rat outer hair cells. Proc Natl Acad Sci U S A 98:4178–4183.PubMedCrossRefGoogle Scholar
  94. Mach E (1875) Grundlinien Der Lehre Von Den Bewegungsempfindugen. Leipzig: Engelmann.Google Scholar
  95. Manley GA (2000) Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci U S A 97:11736–11743.PubMedCrossRefGoogle Scholar
  96. Manley GA, Gallo L (1997) Otoacoustic emissions, hair cells and myosin motors. J Acoust Soc Am 102:1049–1055.PubMedCrossRefGoogle Scholar
  97. McLaren JW, Hillman DE (1979) Displacement of the semicircular canal cupula during sinusoidal rotation. Neuroscience 4:2001–2008.PubMedCrossRefGoogle Scholar
  98. Minor LB, Cremer PD, Carey JP, Della Santina CC, Streubel SO, Weg N (2001) Symptoms and signs in superior canal dehiscence syndrome. Ann N Y Acad Sci 942:259–273.PubMedGoogle Scholar
  99. Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16:325–332.PubMedGoogle Scholar
  100. Njeugna E, Eichhorn JL, Kopp C, Harlicot P (1992) Mechanics of the cupula: effects of its thickness. J Vestib Res 2:227–234.PubMedGoogle Scholar
  101. Oman CM, Marcus EN, Curthoys IS (1987) The influence of semicircular canal morphology on endolymph flow dynamics. Acta Otolaryngol 103:1–13.PubMedGoogle Scholar
  102. Patuzzi RB, Yates GK (1987) The low-frequency response of inner hair cells in the guinea pig cochlea: implications for fluid coupling and resonance of the stereocilia. Hear Res 30:83–98.PubMedGoogle Scholar
  103. Peterson EH, Cotton JR, Grant JW (1996) Structural variation in ciliary bundles of the posterior semicircular canal. Quantitative anatomy and computational analysis. Ann N Y Acad Sci 781:85–102.PubMedGoogle Scholar
  104. Pickles JO (1992) A model for the mechanics of the stereociliary bundle on acousticolateral hair cells. Hear Res 68:159–172.Google Scholar
  105. Platt C, Popper AN (1981) Fine structure and function of the ear. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, p. 3.Google Scholar
  106. Platt C, Popper AN (1984) Variations in lengths of ciliary bundles on hair cells along the macula of the sacculus in two species of teleost fishes. Scanning Electron Microsc 4:1915.Google Scholar
  107. Rabbitt RD (1999) Directional coding of three-dimensional movements by the vestibular semicircular canals. Biol Cybern 80:417–431.PubMedCrossRefGoogle Scholar
  108. Rabbitt RD, Highstein SM, Boyle R (eds) (2000) Adaptation to maintained cupular displacements in semicircular canal hair cells US. Afferent nerves of the toadfish, opsanus tau. Midwinter Meeting of the Association for Research in Otolaryngology. Mt. Royal, NJ: Association for Research in Otolaryngology, p. 5664.Google Scholar
  109. Rabbitt RD, Highstein SM, Boyle R (1999) Influence of surgical plugging on horizontal semicircular canal mechanics and afferent response dynamics. J Neurophysiol 82:1033–1053.PubMedGoogle Scholar
  110. Rabbitt RD, Highstein SM, Boyle R (2001a) Physiology of the semicircular canals after surgical plugging. Ann N Y Acad Sci 942:274–286.PubMedGoogle Scholar
  111. Rabbitt RD, Yamauchi AM, Highstein SM, Boyle R (2001b) How endolymph pressure modulates semicircular canal primary afferent discharge. Ann N Y Acad Sci 942:313–321.PubMedGoogle Scholar
  112. Rask-Anderson H, DeMott JE, Bagger-Sjöbäck D, Salt AN (1999) Morphological changes of the endolymphatic sac induced by microinjection of artificial endolymph into the cochlea. Hear Res 138:81–90.Google Scholar
  113. Reisine H, Simpson JI, Henn V (1988) A geometric analysis of semicircular canals and induced activity in their peripheral afferents in the rhesus monkey. Ann N Y Acad Sci 445:163–172.Google Scholar
  114. Retzius G (1881) Das Gehörorgan der Wirbeltiere. I. Das Gehörorgan der Fische und Amphibien. Stockholm: Centraldruckerei.Google Scholar
  115. Retzius G (1884) Das Gehörorgan der Wirbeltiere. II. Das Gehörorgan der Reptilien, der Vögel und der Säugetiere. Stockholm: Centraldruckerei.Google Scholar
  116. Ricci AJ, Crawford AC, Fettiplace R (2000) Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J Neurosci 20:7131–7142.PubMedGoogle Scholar
  117. Salt AN (2001) Regulation of endolymphatic fluid volume. Ann N Y Acad Sci 942:306–312.PubMedGoogle Scholar
  118. Salt AN, DeMott JE (2000) Ionic and potential changes of the endolymphatic sac induced by endolymph volume changes. Hear Res 149:46–54.PubMedCrossRefGoogle Scholar
  119. Saunders JC, Dear SP (1983) Comparative morphology of stereocilia. In: Fay RR, Gourevitch G (eds) Hearing and Other Senses: Presentations in Honor of EG Wever. Groton: Amphora Press, p. 175.Google Scholar
  120. Silver RB, Reeves AP, Steinacker A, Highstein SM (1998) Examination of the cupula and stereocilia of the horizontal semicircular canal in the toadfish, Opsanus tau. Comp Neurol 402:48–61.Google Scholar
  121. Spector AA (1999) A nonlinear electroelastic model of the cochlear outer hair cell. Appl Mech Am 6:19–22.Google Scholar
  122. Spoendlin HH (1966) The ultrastructure of the vestibular sense organ. In: Wolfson RJ (ed) The Vestibular System and Its Diseases. Philadelphia: University of Pennsylvania Press, pp. 39–68.Google Scholar
  123. Steer RW, Li YT, Young LR (1967) Physical properties of the labyrinthine fluids and quantification of the phenomenon of caloric stimulation. In: Third Symposium on the Role of the Vestibular Organs in Space Exploration, SP-152. Moffett Field, CA: NASA Ames Research Center, pp. 409–420.Google Scholar
  124. Steinhausen W (1933) Über die beobachtungen der cupula in der bognegangsampullen des labyrinthes des libenden hecths. Pflügers Arch 232:500–512.CrossRefGoogle Scholar
  125. Steinhausen W (1934) Über die durch die otolithen ausgelösten kräfte. Pflügers Arch 235:538–544.Google Scholar
  126. Sziklai I, Ferrary E, Horner KC, Sterkers O, Amiel C (1992) Timerelated alteration of endolymph composition in an experimental model of endolymphatic hydrops. Laryngoscope 102:431–438.PubMedGoogle Scholar
  127. Szymko Y, Dimitri P, Saunders J (1992) Stiffness of hair bundles in the chick cochlea. Hear Res 59:241–249.PubMedCrossRefGoogle Scholar
  128. Tsuprun V, Santi P (2000) Helical structure of hair cell stereocilia tip link in the chinchilla cochlea. J Assoc Res Otolaryngol 21:224–231.Google Scholar
  129. Van Buskirk W (1987) Vestibular mechanics. In: Skalak R, Chien S (eds) Handbook of Bioengineering. New York: New York Academy of Sciences, pp. 31.1–31.17.Google Scholar
  130. Van Buskirk WC, Grant JW (1973) Biomechanics of the semicircular canals. Biomechanics Symposium. New York: American Society of Mechanical Engineers, pp. 53–54.Google Scholar
  131. Van Buskirk WC, Watts RG, Liu YK (1976) The fluid mechanics of the semicircular canals. J Fluid Mech 78:87–98.Google Scholar
  132. van Netten SM, Khanna SM (1994) Stiffness changes of the cupula associated with the mechanics of hair cells in the fish lateral line. Proc Natl Acad Sci USA 91:1549–1553.PubMedGoogle Scholar
  133. von Gersdorff H, Matthews G (1999) Electrophysiology of synaptic vesicle cycling. Annu Rev Physiol 61:725–752.Google Scholar
  134. Weiss TF, Freeman DM (1997) Equilibrium behavior of an isotropic polyelectrolyte gel model of the tectorial membrane: effect of pH. Hear Res 111:55–64.PubMedCrossRefGoogle Scholar
  135. Wersäll J, Bagger-Sjöbäck D (1974) Morphology of the vestibular sense organ. In: Kornhuber HH (ed) Handbook of Sensory Physiology: Vestibular System. New York: Springer-Verlag, pp. 123–170.Google Scholar
  136. Wilson VJ, Jones GM (1979) Mammalian Vestibular Physiology. New York: Plenum Press.Google Scholar
  137. Wright A (1984) Dimensions of the cochlear stereocilia in man and guinea pig. Hear Res 13:89–98.PubMedCrossRefGoogle Scholar
  138. Yamauchi AM (2002) Cupular Micromechanics and Motion Sensation in the Toadfish Vestibular Semicircular Canals. Salt Lake City: University of Utah.Google Scholar
  139. Yamauchi AM, Rabbitt RD, Boyle R, Highstein SM (2002) Relationship between inner-ear fluid pressure and semicircular canal afferent nerve discharge. J Assoc Res Otolaryngol 3:26–44.PubMedCrossRefGoogle Scholar
  140. Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • Richard D. Rabbitt
  • Edward R. Damiano
  • J. Wallace Grant

There are no affiliations available

Personalised recommendations