Computational Detection of the Binding Site Hot Spot and Predicting Energetics of Ligand Binding at the Remodeled Human Growth Hormone-Receptor Interface Using a Hierarchy of Molecular Docking and Binding Free Energy Approaches

  • Gennady M. Verkhivker


Docking Simulation Binding Free Energy Indole Ring Energy Cluster Equilibrium Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McCammon, J.A., 1998, Theory of biomolecular recognition. Curr. Opin. Struct. Biol. 8: 245–249.PubMedCrossRefGoogle Scholar
  2. 2.
    Muller-Dethlefs, K., Hobza, P., 2000, Noncovalent interactions: a challenge for experiment an theory. Chem. Rev, 100: 143–167.PubMedCrossRefGoogle Scholar
  3. 3.
    Gane, P.G., Dean, P.M., 2000, Recent advances in structure-based rational drug design. Curr. Opin. Struct. Biol. 10: 401–404.PubMedCrossRefGoogle Scholar
  4. 4.
    Davis, A.M., Teague, S.J., 1999, Hydrogen bonding, hydrophobic interactions, and failure of the rigid receptor hypothesis. Angew Chem. Int. Ed. Engl. 38: 736–749.Google Scholar
  5. 5.
    Van Regenmortel, M.H., 1999, Molecular recognition in the post-reductionist era. J. Mol. Recognit. 12: 1–2.PubMedGoogle Scholar
  6. 6.
    Carlson, H.A., McCammon, J.A., 2000, Accommodating protein flexibility in computational drug design. Mol. Pharmacol. 57: 213–218.PubMedGoogle Scholar
  7. 7.
    DeLano, W.L., 2002, Unraveling hot spots in binding interfaces: progress and challenges. Curr. Opin. Struct. Biol. 12: 14–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Jones, S., Thornton, J.M., 1996, Principles of protein-protein interactions. Proc. Natl. Acad. Sci. U S A 93: 13–20.PubMedGoogle Scholar
  9. 9.
    Lo Conte, L., Chothia, C., Janin, J., 1999, The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285: 2177–2198.PubMedGoogle Scholar
  10. 10.
    Bogan, A.A., Thorn, K.S., 1998, Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280: 1–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Hu, Z., Ma, B., Wolfson, H., 2000, Nussinov R. Conservation of polar residues as hot spots at protein interfaces. Proteins 39: 331–342.PubMedCrossRefGoogle Scholar
  12. 12.
    Ma, B., Wolfson, H.J., Nussinov, R., 2001, Protein functional epitopes: hot spots, dynamics and combinatorial libraries. Curr. Opin. Struct. Biol. 11: 364–369.PubMedCrossRefGoogle Scholar
  13. 13.
    Sundberg, E.J., Mariuzza, R.A., 2000, Luxury accommodations: the expanding role of structural plasticity in protein-protein interactions. Structure Fold Des. 8: R137–R142.PubMedGoogle Scholar
  14. 14.
    Frauenfelder, H., Leeson, D.T., 1998, The energy landscape in non-biological and biological molecules. Nat. Struct. Biol. 5: 757–759.PubMedCrossRefGoogle Scholar
  15. 15.
    Rejto, P.A., Freer, S.T., 1996, Protein conformational substates from X-ray crystallography. Prog. Biophys. Mol. Biol. 66: 167–196.PubMedGoogle Scholar
  16. 16.
    Tsai, C.J., Ma, B., Nussinov, R., 1999, Folding and binding cascades: shifts in energy landscapes. Proc. Natl. Acad. Sci. U S A 96: 9970–9972.PubMedCrossRefGoogle Scholar
  17. 17.
    Kumar, S., Ma, B., Tsai, C.J., Sinha, N., Nussinov, R., 2000, Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci. 9: 10–19.PubMedGoogle Scholar
  18. 18.
    Demchenko, A.P., 2001, Recognition between flexible protein molecules: induced and assisted folding. J. Mol. Recognit. 14: 42–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Forman-Kay, J.D., 1999, The ‘dynamics’ in the thermodynamics of binding. Nature Struct Biol. 6: 1086–1087.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee, A.L., Kinnear, S.A., Wand, A.J., 2000, Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nat. Struct. Biol. 7: 72–77.PubMedGoogle Scholar
  21. 21.
    Zidek, L., Novotny, M.V., Stone, M.J., 1999, Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat. Struct. Biol. 6: 1118–1121.PubMedGoogle Scholar
  22. 22.
    Cavanagh, J., Akke, M., 2000, May the driving force be with you-whatever it is. Nat. Struct. Biol. 7: 11–13.PubMedGoogle Scholar
  23. 23.
    DeLano, W.L., Ultsch, M.H., de Vos, A.M., Wells, J.A., 2000, Convergent solutions to binding at a protein-protein interface. Science 287: 1279–1283.PubMedCrossRefGoogle Scholar
  24. 24.
    Tondi, D., Slomczynska, U., Costi, M.P., Watterson, D.M., Ghelli, S., Shoichet, B.K., 1999, Structure-based discovery and in-parallel optimization of novel competitive inhibitors of thymidylate synthase. Chem. Biol. 6: 319–331.PubMedCrossRefGoogle Scholar
  25. 25.
    Verkhivker, G.M., Bouzida, D., Gehlhaar, D.K., Rejto, P.A., Freer, S.T., Rose, P.W., 2002, Monte Carlo simulations of the peptide recognition at the consensus binding site of the constant fragment (Fc) of human immunoglobulin G: the energy landscape analysis of a hot spot at the intermolecular interface. Proteins 48: 539–557.PubMedCrossRefGoogle Scholar
  26. 26.
    Wells, J.A., 1991, Systematic mutational analyses of protein-protein interfaces. Methods Enzymol. 202: 390–411.PubMedGoogle Scholar
  27. 27.
    Wells, J.A., de Vos, A.M., 1993, Structure and function of human growth hormone: implications for the hematopoietins. Anna. Rev. Biophys. Biomol. Struct. 22: 329–51Google Scholar
  28. 28.
    Wells, J.A., 1996, Binding in the growth hormone receptor complex. Proc. Natl. Acad. Sci. USA 93: 1–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Cunningham, B.C., Jhurani, P., Ng, P., Wells, J.A., 1989, Receptor and antibody epitopes in human growth hormone identified by homolog-scanning mutagenesis. Science 243: 1330–1336.PubMedGoogle Scholar
  30. 30.
    Cunningham, B.C., Wells, J.A., 1989, High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244: 1081–1085.PubMedGoogle Scholar
  31. 31.
    Cunningham, B.C., Ultsch, M., De Vos, A.M., Mulkerrin, M.G., Clauser, K.R., Wells, J.A., 1991, Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science 254: 821–825.PubMedGoogle Scholar
  32. 32.
    Ultsch, M., de Vos, A.M., Kossiakoff, A.A., 1991, Crystals of the complex between human growth hormone and the extracellular domain of its receptor. J. Mol. Biol. 222: 865–868.PubMedCrossRefGoogle Scholar
  33. 33.
    de Vos, A.M., Ultsch, M., Kossiakoff, A.A., 1992, Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255: 306–312.PubMedGoogle Scholar
  34. 34.
    Kossiakoff, A.A., Somers, W., Ultsch, M., Andow, K., Muller, Y.A., de Vos, A.M., 1994, Comparison of the intermediate complexes of human growth hormone bound to the human growth hormone and prolactin receptors. Protein Sci. 3: 1697–1705.PubMedGoogle Scholar
  35. 35.
    Somers, W., Ultsch, M., de Vos, A.M., Kossiakoff, A.A., 1994, The X-ray structure of a growth hormone-prolactin receptor complex. Nature 372: 478–481.PubMedCrossRefGoogle Scholar
  36. 36.
    Bass, S.H., Mulkerrin, M.G., Wells, J.A., 1991, A systematic mutational analysis of hormone binding determinants in the human growth hormone receptor. Proc. Natl. Acad. Sci. USA 88: 4498–44502.PubMedGoogle Scholar
  37. 37.
    Cunningham, B.C., Wells, J.A., 1993, Comparison of a structural and a functional epitope. J. Mol. Biol. 234: 554–563.PubMedCrossRefGoogle Scholar
  38. 38.
    Clackson, T., Wells, J., 1995, A hot spot of binding energy in a hormone-receptor interface. Science 267: 383–386.PubMedGoogle Scholar
  39. 39.
    Jin, L., Wells, J.A., 1994, Dissecting the energetics of an antibody-antigen interface by alanine shaving and molecular grafting. Protein Sci. 3: 2351–2357.PubMedCrossRefGoogle Scholar
  40. 40.
    Pearce, K.H.Jr., Ultsch, M.H., Kelley, R.F., de Vos, A.M., Wells, J.A., 1996, Structural and mutational analysis of affinity-inert contact residues at the growth hormonereceptor interface. Biochemistry 35: 10300–10307.PubMedCrossRefGoogle Scholar
  41. 41.
    Clackson, T., Ultsch, M.H., Wells, J.A., de Vos, A.M., 1998, Structural and functional analysis of the 1∶1 growth hormone:receptor complex reveals the molecular basis for receptor affinity. J. Mol. Biol. 277: 1111–1128.PubMedCrossRefGoogle Scholar
  42. 42.
    Huo, S., Massova, I., Kollman, P.A., 2002, Computational alanine scanning of the 1∶1 human growth hormone-receptor complex. J. Comput. Chem. 23: 15–27.PubMedCrossRefGoogle Scholar
  43. 43.
    Atwell, S., Ultsch, M., De Vos, A.M., Wells, J.A., 1997, Structural plasticity in a remodeled protein-protein interface. Science 278: 1125–1128.PubMedCrossRefGoogle Scholar
  44. 44.
    Lowman, H.B., Wells, J.A., 1993, Affinity maturation of human growth hormone by monovalent phage display. J. Mol. Biol. 234: 564–578.PubMedCrossRefGoogle Scholar
  45. 45.
    Schiffer, C., Ultsch, M., Walsh, S., Somers, W., de Vos, A.M., Kossiakoff, A., 2002, Structure of a phage display-derived variant of human growth hormone complexed to two copies of the extracellular domain of its receptor: evidence for strong structural coupling between receptor binding sites. J. Mol. Biol. 316: 277–289.PubMedCrossRefGoogle Scholar
  46. 46.
    Bishop, A., Buzko, O., Heyeck-Dumas, S., Jung, I., Kraybill, B., Liu, Y., Shah, K., Ulrich, S., Witucki, L., Yang, F., Zhang, C., Shokat, K.M., 2000, Unnatural ligands for engineered proteins: new tools for chemical genetics. Annu. Rev. Biophys. Biomol. Struct. 29: 577–606.PubMedCrossRefGoogle Scholar
  47. 47.
    Bishop, A.C., Buzko, O., Shokat, K.M., 2001, Magic bullets for protein kinases. Trends Cell. Biol. 11: 167–172.PubMedCrossRefGoogle Scholar
  48. 48.
    Shogren-Knaak, M.A., Alaimo, P.J., Shokat, K.M., 2001, Recent advances in chemical approaches to the study of biological systems. Annu. Rev. Cell Dev. Biol. 17: 405–433PubMedCrossRefGoogle Scholar
  49. 49.
    Alaimo, P.J., Shogren-Knaak, M.A., Shokat, K., 2001, Chemical genetic approaches for the elucidation of signaling pathways. Curr. Opin. Chem. Biol. 5: 360–367.PubMedCrossRefGoogle Scholar
  50. 50.
    Specht, K.M., Shokat, K.M., 2002, The emerging power of chemical genetics. Curr. Opin. Cell Biol. 14: 155–159.PubMedCrossRefGoogle Scholar
  51. 51.
    Guo, Z., Zhou, D., Schultz, P.G., 2000, Designing small-molecule switches for protein-protein interactions. Science 288: 2042–2045.PubMedCrossRefGoogle Scholar
  52. 52.
    Verkhivker, G.M., Bouzida, D., Gehlhaar, D.K., Rejto, P.A., Freer, S.T., Rose, P.W., 2003, Computational detection of the binding site hot spot at the remodeled human growth hormoneeceptor interface. Proteins 53: 201–219.PubMedCrossRefGoogle Scholar
  53. 53.
    Rejto, P.A., Verkhivker, G.M., 1996, Unraveling principles of lead discovery: from unfrustrated energy landscapes to novel molecular anchors. Proc. Natl. Acad. Sci. USA 93: 8945–8950.PubMedCrossRefGoogle Scholar
  54. 54.
    Verkhivker, G.M., Rejto, P.A., 1996, A mean field model of ligand-protein interactions, Implications for the structural assessment of human immunodefi-ciency virus type 1 protease complexes and receptor-specific binding. Proc. Natl. Acad. Sci. USA 93: 60–64.PubMedCrossRefGoogle Scholar
  55. 55.
    Verkhivker, G.M., Rejto, P.A., Gehlhaar, D.K., Freer, S.T., 1996, Exploring energy landscapes of molecular recognition by a genetic algorithm, analysis of the requirements for robust docking of HIV-1 protease and FKBP-12 complexes. Proteins 25: 342–353.PubMedCrossRefGoogle Scholar
  56. 56.
    Verkhivker, G.M., Bouzida, D., Gehlhaar, D.K., Rejto, P.A., Schaffer, L., Arthurs, S., Colson, A.B., Freer, S.T., Larson, V., Luty, B.A., Marrone, T., Rose, P.W., 2001, Hierarchy of simulation models in predicting molecular recognition mechanisms from the binding energy landscapes. Structural analysis of the peptide complexes with SH2 domains. Proteins 45: 456–470.PubMedCrossRefGoogle Scholar
  57. 57.
    Verkhivker, G.M., Bouzida, D., Gehlhaar, D.K., Rejto, P.A., Arthurs, S., Colson, A.B., Freer, S.T., Larson, V., Luty, B.A., Marrone, T., Rose, P.W., 2000, Deciphering common failures in molecular docking of ligand-protein complexes. J. Comput. Aided Mol. Des. 14: 731–751.PubMedCrossRefGoogle Scholar
  58. 58.
    Verkhivker, G.M., Bouzida, D., Gehlhaar, D.K., Rejto, P.A., Schaffer, L., Arthurs, S., Colson, A.B., Freer, S.T., Larson, V., Luty, B.A., Marrone, T., Rose, P.W., 2002, Hierarchy of simulation models in predicting structure and energetics of the Src SH2 domain binding to the tyrosyl phosphopeptides. J. Med. Chem. 45: 72–89.PubMedCrossRefGoogle Scholar
  59. 59.
    Bouzida, D., Rejto, P.A., Arthurs, S., Colson, A.B., Freer, S.T., Gehlhaar, D.K., Larson, V., Luty, B.A., Rose, P.W., Verkhivker, G.M., 1999, Computer simulations of ligand-protein binding With ensembles of protein conformations: a Monte Carlo study of HIV-1 protease binding energy landscapes. Int. J. Quantum. Chem. 72: 73–84.CrossRefGoogle Scholar
  60. 60.
    Bouzida, D., Rejto, P.A., Verkhivker, G.M., 1999, Monte Carlo simulations of ligand-protein binding energy landscapes With the weighted histogram analysis method. Int. J. Quantum. Chem. 73: 113–121.CrossRefGoogle Scholar
  61. 61.
    Verkhivker, G.M., Rejto, P.A., Bouzida, D., Arthurs, S., Colson, A.B., Freer, S.T., Gehlhaar, D.K., Larson, V., Luty, B.A., Marrone, T., Rose, P.W., 1999, Towards understanding the mechanisms of molecular recognition by computer simulations of ligand-protein interactions. J. Mol.Recognit. 12: 371–389.PubMedCrossRefGoogle Scholar
  62. 62.
    Mayo, S.L., Olafson, B.D., Goddard, W.A., 1990, III. DREIDING: A generic force field for molecular simulation. J. Phys. Chem. 94: 8897–8909.CrossRefGoogle Scholar
  63. 63.
    Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Chio, C., Alagona, G., Profeta, S., Weiner, P., 1984, A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106: 765–784.Google Scholar
  64. 64.
    Still, W.C., Tempczyk, A., Hawley, R.C., Hendrickson, T., 1990, Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112: 6127–6129.CrossRefGoogle Scholar
  65. 65.
    Mohamadi, F., Richards, N.G.J., Guida, W.C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrickson, T., Still, W.C., 1990, MacroModel-an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J. Comput. Chem. 11: 440–467.CrossRefGoogle Scholar
  66. 66.
    Qiu, D., Shenkin, P.S., Hollinger, F.P., Still, W.C., 1997, The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate born radii. J. Phys. Chem. A 101: 3005–3014.Google Scholar
  67. 67.
    Weiser, J., Weiser, A.A., Shenkin, P.S., Still, W.C., 1998, Neighbor-list reduction: optimization for computation of molecular van der Waals and solventaccessible surface areas. J. Comput. Chem. 19: 797–808.Google Scholar
  68. 68.
    Weiser, J., Weiser, A.A., Shenkin, P.S., Still, W.C., 1998, Erratum: Neighbor-list reduction: optimization for computation of molecular van der Waals and solvent-accessible surface areas. J. Comput. Chem. 19: 1110.Google Scholar
  69. 69.
    Weiser, J., Shenkin, P.S., Still, W.C., 1999, Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J. Comput. Chem. 20: 217–230.Google Scholar
  70. 70.
    Weiser, J., Shenkin, P.S., Still, W.C., 1999, Fast, approximate algorithm for detection of solvent-inaccessible atoms. J. Comput. Chem. 20: 586–596.Google Scholar
  71. 71.
    Srinivasan, J., Cheatham, T.E., Cieplak, P., Kollman, P.A., Case, D.A., 1998, Continuum solvent studies of the stability of DNA, RNA and phosphoramidate-DNA helices. J. Am. Chem. Soc. 120: 9401–9409.Google Scholar
  72. 72.
    Massova, I., Kollman, P.A., 1999, Computational alanine scanning to probe proteinprotein interactions: a novel approach to evaluate binding free energies. J. Am. Chem. Soc. 121: 8133–8143.CrossRefGoogle Scholar
  73. 73.
    Chong, L.T., Duan, Y., Wang, L., Massova, I., Kollman, P.A., 1999, Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7. Proc. Natl. Acad. Sci. USA 96: 14330–14335.PubMedCrossRefGoogle Scholar
  74. 74.
    Kuhn, B., Kollman, P.A., 2000, A ligand that is predicted to bind better to avidin than biotin: insights from computational fluorine scanning. J. AM. Chem. Soc. 122: 3909–3916.Google Scholar
  75. 75.
    Kuhn, B., Kollman, P.A., 2000, Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J. Med. Chem. 43: 3786–3791.PubMedCrossRefGoogle Scholar
  76. 76.
    Lee, M.R.; Duan, Y.; Kollman, P.A., 2000, Use of MM-PB/SA in Estimating the Free Energies of Proteins: Application to Native, Intermediates, And Unfolded Villin Headpiece. Proteins 39: 309–316.PubMedCrossRefGoogle Scholar
  77. 77.
    Wang, W., Kollman, P.A., 2000, Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model. J. Mol. Biol. 303: 567–582.PubMedCrossRefGoogle Scholar
  78. 78.
    Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D.A., Cheatham, T.E., 2000, III. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 33: 889–897.PubMedCrossRefGoogle Scholar
  79. 79.
    Tsui, V., Case, D.A., 1992, Molecular dynamics simulations of nucleic acids with a generalized Born solvation model. J. Amer. Chem. Soc. 122: 2489–2498.Google Scholar
  80. 80.
    Marinari, E., Parisi, G., 1992, Simulated tempering: a new Monte Carlo scheme. Europhys. Lett. 19: 451–458.Google Scholar
  81. 81.
    Hukushima, K., Nemoto, K., 1996, Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. (Jap) 65: 1604–1607.Google Scholar
  82. 82.
    Hansmann, U.H.E., Okamoto, Y., 1996, Monte Carlo simulations in generalized ensemble: multicanonical algorithm versus simulated tempering. Phys. Rev. E 54: 5863–5865.Google Scholar
  83. 83.
    Hansmann, U.H.E., Okamoto, Y., 1997, Generalized-ensemble Monte Carlo method for systems with rough energy landscape. Phys. Rev. E 56: 2228–2233.Google Scholar
  84. 84.
    Hansmann, U.H.E., Okamoto, Y., 1997, Numerical comparisons of three recently proposed algorithms in the protein folding problem. J. Comput. Chem. 18: 920–933.CrossRefGoogle Scholar
  85. 85.
    Hansmann, U.H.E., 1997, Parallel tempering algorithm for conformational studies of biological molecules. Chem. Phys. Lett. 281: 140–150.CrossRefGoogle Scholar
  86. 86.
    Sugita, Y., Okamoto, Y., 1999, Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314: 141–151.CrossRefGoogle Scholar
  87. 87.
    Verkhivker, G.M., Rejto, P.A., Bouzida, D., Arthurs, S., Colson, A.B., Freer, S.T., Gehlhaar, D.K., Larson, V., Luty, B. A., Marrone, T., Rose, P.W., 2001, Navigating ligand-protein binding free energy landscapes: universality and diversity of protein folding and molecular recognition mechanisms. Chem. Phys. Lett. 336: 495–503.CrossRefGoogle Scholar
  88. 88.
    Bouzida, D., Kumar, S., Swendsen, R.H., 1992, Efficient Monte Carlo methods for the computer simulation of biological molecules. Phys. Rev. A 45: 8894–8901.Google Scholar
  89. 89.
    Willet, P., Winterman, V., 1986, A Comparison of some measures for the determination of intermolecular structural similarity. Quant. Struct-Act. Relat. Pharmacol. Chem. Biol. 5: 18–25.Google Scholar
  90. 90.
    Willet, P., Winterman, V., Bawden, D., 1986, Implementation of non-hierarchical cluster analysis methods in chemical information systems: selection of compounds for biological testing and clustering of substructure search output. J. Chem. Inf. Comput. Sci. 26: 109–118.Google Scholar
  91. 91.
    Bawden, D., 1988, Browsing and clustering of chemical structures. In: The international language of chemistry. (W.A. Warr, ed.), Berlin: Springer-Verlag; p. 145–150.Google Scholar
  92. 92.
    Dennis, S., Kortvelyesi, T., Vajda, S., 2002, Computational mapping identifies the binding sites of organic solvents on proteins. Proc. Natl. Acad. Sci. USA 99: 4290–4295.PubMedCrossRefGoogle Scholar
  93. 93.
    Caflisch, A., Miranker, A., Karplus, M., 1993, Multiple copy simultaneous search and construction of ligands in binding sites: application to inhibitors of HIV-1 aspartic proteinase. J. Med. Chem. 36: 2142–2167.PubMedCrossRefGoogle Scholar
  94. 94.
    Stultz, C.M., Karplus, M., 1999, MCSS functionality maps for a flexible proteins. Proteins 37: 512–529.PubMedCrossRefGoogle Scholar
  95. 95.
    Joseph-McCarthy, D., Tsang, S.K., Filman, D.J., Hogle, J.M,, Karplus, M., 2001, Use of MCSS to design small targeted libraries: application to picornavirus ligands. J. Am. Chem. Soc. 123: 12758–12766.PubMedCrossRefGoogle Scholar
  96. 96.
    Bitetti-Putzer, R., Joseph-McCarthy, D., Hogle, J.M., Karplus, M., 2001, Functional group placement in protein binding sites: a comparison of GRID and MCSS. J. Comput. Aided. Mol. Des. 15: 935–960.PubMedCrossRefGoogle Scholar
  97. 97.
    Mattos, C., Ringe, D., 1996, Locating and characterizing binding sites on proteins. Nat.Biotechnol. 14: 595–599.PubMedCrossRefGoogle Scholar
  98. 98.
    Ringe, D., Mattos, C., 1999, Analysis of the binding surfaces of proteins. Med. Res. Rev. 19: 321–331.PubMedCrossRefGoogle Scholar
  99. 99.
    Powers, R.A., Shoichet, B.K., 2002, Structure-based approach for binding site identification on AmpC beta-lactamase. J. Med. Chem. 45: 3222–3234.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Gennady M. Verkhivker
    • 1
  1. 1.Pfizer Global Research and DevelopmentLa Jolla LaboratoriesSan DiegoUSA

Personalised recommendations