A Microscopic Study of Disorder-Order Transitions in Molecular Recognition of Unstructured Proteins: Hierarchy of Structural Loss and the Transition State Determination from Monte Carlo Simulations of P27KIP1 Protein Coupled Unfolding and Unbinding

  • Gennady M. Verkhivker

Conclusions

A microscopic characterization of the free energy barrier suggests an atomic picture of the binding mechanism that rationalizes and reconciles the hypothesized initiation binding event with the experimental data, indicating a kinetic advantage for the intrinsically unstructured α-helix in the unbound form. Despite considerable differences between individual trajectories, the analysis of independent simulations at T=600K shows a systematic trend in the hierarchy of structural loss for p27Kip1 during coupled unfolding and unbinding. The emerging structural polarization in the ensemble of unfolding/unbinding trajectories and in the computationally determined TSE are not determined by the folding topological preferences of p27Kip1, but is interpreted as a consequence of the topological requirements of the intermolecular interface to minimize free energy cost associated with ordering the β-hairpin and β-strand intermolecular contacts which are the last one to disintegrate in unfolding/unbinding and thereby could be important for nucleating rapid folding and binding. In agreement with the experimental data, it has been shown that the topology of the native intermolecular interface coupled with the localized, specific interactions formed by p27Kip1 with the complex in transition state overwhelms any local folding preferences for creating a stable α-helix prior to overcoming the major free energy barrier. These results provide a structural rationale for the experimental data revealing that preorganized native-like local secondary structure in p27Kip1 can result in slower binding. Hence, folding of unstructured proteins upon binding to a given template is largely determined by the requirements to form specific complex that ultimately dictates the folding mechanism. By using a protein engineering approach similar to the -value analysis developed to characterize the TS ensemble in protein folding, it should be possible to validate the predicted details of the binding mechanism by probing the kinetic consequences of mutations of every residue that makes appreciable interactions in the native state. Synergy of theoretical and experimental advances in the fields of protein folding and binding, based on the increasing amount of information in known structures and mechanisms may provide a fruitful direction for future research and allow to unify interdisciplinary efforts in resolving these key problems in molecular biology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wright, P.E., & Dyson, H.J., 1999, Coupling of folding and binding for unstructured proteins. J. Mol. Biol. 293: 321–331.PubMedCrossRefGoogle Scholar
  2. 2.
    Dunker, A.K., Lawson, J.D., Brown, C.J., Williams, R.M., Romero, P., Oh, J.S., Oldfield, C.J., Campen, A.M., Ratliff, C.M., Hipps, K.W., Ausio, J., Nissen, M.S., Reeves, R., Kang, C., Kissinger, C,R., Bailey, R.W., Griswold, M.D., Chiu, W., Garner, E.C., & Obradovic, Z., 2001, Intrinsically disordered protein. J. Mol. Graph. Model. 19: 26–59.PubMedGoogle Scholar
  3. 3.
    Dunker, A.K., & Obradovic, Z., 2001, The protein trinity-linking function and disorder. Nat. Biotechnol. 19: 805–806.PubMedCrossRefGoogle Scholar
  4. 4.
    Dunker, A.K., Brown, C.J., & Obradovic, Z., 2002, Identification and functions of usefully disordered proteins. Adv. Protein. Chem. 62: 25–49.PubMedGoogle Scholar
  5. 5.
    Dunker, A.K., Brown, C.J., Lawson, J.D., Iakoucheva, L.M., & Obradovic, Z., 2002, Intrinsic disorder and protein function. Biochemistry 41: 6573–6582.PubMedCrossRefGoogle Scholar
  6. 6.
    Dyson, H.J., & Wright, P.E., 2002, Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12: 54–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Dyson, H.J., & Wright, P.E., 2002, Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Adv. Protein Chem. 62: 311–314.PubMedGoogle Scholar
  8. 8.
    Uversky, V.N., 2002, Natively.unfolded proteins: a point where biology waits for physics. Protein Sci. 11: 739–756.PubMedCrossRefGoogle Scholar
  9. 9.
    Uversky, V.N., Gillespie, J.R., & Fink, A.L., 2000, Why are “natively unfolded” proteins unstructured under physiologic conditions. Proteins: Struct. Funct. Genet. 41: 415–427.Google Scholar
  10. 10.
    Uversky, V.N., 2002, What does it mean to be natively unfolded? Eur. J. Biochem. 269: 2–12.PubMedCrossRefGoogle Scholar
  11. 11.
    Spolar, R.S., & Record, M.T., 1994, Coupling of local folding to sitespecific binding of proteins to DNA. Science 263: 777–784.PubMedGoogle Scholar
  12. 12.
    Plaxco, K. W. & Gross, M. (1997) The importance of being unfolded. Nature 386: 657–659.PubMedCrossRefGoogle Scholar
  13. 13.
    Kriwacki, R.W., Hengst, L., Tennant, L., Reed, S.I., & Wright, P.E., 1996, Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc. Natl. Acad. Sci. USA 93: 11504–11509.PubMedCrossRefGoogle Scholar
  14. 14.
    Hashimoto, Y,, Kohri, K., Kaneko, Y., Morisaki, H., Kato, T., Ikeda, K., & Nakanishi, M., 1998,. Critical role for the 310 helix region of p57(Kip2) in cyclin-dependent kinase 2 inhibition and growth suppression. J Biol Chem 273: 16544–16550.PubMedGoogle Scholar
  15. 15.
    Adkins, J.N., Lumb, K., 2002, Intrinsic structural disorder and sequence features of the cell cycle inhibitor p57Kip2. Proteins: Struct. Funct. Genet. 46: 1–7.Google Scholar
  16. 16.
    Russo, A,A,, Jeffrey, P.D., Patten, A.K., Massague, J., & Pavletich, N.P., 1996, Crystal structure of the p27Kipl cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382: 325–331.PubMedCrossRefGoogle Scholar
  17. 17.
    Flaugh, S.L., & Lumb, K.J., 2001, Effects of macromolecular crowding on the intrinsically disordered proteins c-Fos and p27(Kip1). Biomacromolecules 2: 538–540.PubMedCrossRefGoogle Scholar
  18. 18.
    Bienkiewicz, E.A., Adkins, J.N., & Lumb, K., 2002, Functional consequences of preorganized helical structure in the intrinsically disordered cell-cycle inhibitor p27(Kip1). Biochemistry 41: 752–759.PubMedCrossRefGoogle Scholar
  19. 19.
    Davis, A.M. & Teague, S.J., 1999, Hydrogen bonding, hydrophobic interactions, and failure of the rigid receptor hypothesis. Angew. Chem. Int. Ed. Engl. 39: 736–749.Google Scholar
  20. 20.
    Van Regenmortel, M.H., 1999, Molecular recognition in the postreductionistera. J. Mol. Recognit. 12: 1–2.PubMedGoogle Scholar
  21. 21.
    Carlson, H.A. & McCammon J.A., 2000, Accommodating protein flexibility in computational drug design. Mol. Pharmacol. 57: 213–218.PubMedGoogle Scholar
  22. 22.
    Ma, B., Wolfson, H.J., & Nussinov, R., 2001, Protein functional epitopes: hot spots, dynamics and combinatorial libraries. Curr. Opin. Struct. Biol. 11: 364–369.PubMedCrossRefGoogle Scholar
  23. 23.
    Atwell, S., Ultsch, M., De Vos, A.M., & Wells, J.A., 1997, Structural plasticity in a remodeled protein-protein interface. Science 278: 1125–1128.PubMedCrossRefGoogle Scholar
  24. 24.
    Sundberg, E.J., & Mariuzza, R.A., 2000, Luxury accommodations: the expanding role of structural plasticity in protein-protein interactions. Structure Fold. Des. 8: R137–142.PubMedGoogle Scholar
  25. 25.
    Demchenko, A.P., 2001, Recognition between flexible protein molecules: induced and assisted folding. J. Mol. Recognit. 14: 42–61.PubMedCrossRefGoogle Scholar
  26. 26.
    DeLano, W.L., Ultsch, M.H., de Vos, A.M., & Wells, J.A., 2000, Convergent solutions to binding at a protein-protein interface. Science 287: 1279–1283.PubMedCrossRefGoogle Scholar
  27. 27.
    Luque, I., Leavitt, S.A., & Freire E., 2002, The linkage between protein folding and functional cooperativity: two sides of the same coin. Annu. Rev. Biophys. Biomol Struct. 31: 235–256.PubMedCrossRefGoogle Scholar
  28. 28.
    Bryngelson, J. D., Onuchic, J. N., Socci, N. D. & Wolynes, P. G., 1995, Funnels, pathways, and the energy landscape of protein folding, a synthesis. Proteins: Struct. Funct. Genet.: Struct. Funct. Genet. 21: 167–195.Google Scholar
  29. 29.
    Dill, K. A., Bromberg, S., Yue, K., Fiebig, K.M., Yee, D.P., Thomas, P.D. & Chan, H.S., 1995, Principle of protein folding-a perspective from simple exact models. Protein Sci. 4: 561–602.PubMedGoogle Scholar
  30. 30.
    Dill, K.A. & Chan, H.S., 1997, From Levinthal to pathways to funnels. Nat. Struct. Biol. 4: 10–19.PubMedCrossRefGoogle Scholar
  31. 31.
    Onuchic, J.N., Luthey-Schulten, Z., & Wolynes, P.G., 1997, Theory of protein folding: the energy landscape perspective. Annu. Rev. Phys. Chem. 48: 545–560.PubMedCrossRefGoogle Scholar
  32. 32.
    Onuchic, J.N., Nymeyer, H., Garcia, A.E., Chahine, J., & Socci, N.D., 2000, The energy landscape theory of protein folding: insights into folding mechanisms and scenarios. Adv. Protein. Chem. 53: 87–152.PubMedGoogle Scholar
  33. 33.
    Plotkin, S.S., & Onuchic, J.N., 2002, Understanding protein folding with energy landscape theory. Part I: Basic concepts. Q. Rev. Biophys. 35: 111–167.PubMedGoogle Scholar
  34. 34.
    Shakhnovich, E.I., 1997, Theoretical studies of protein-folding thermodynamics and kinetics. Curr. Opin. Struct. Biol. 7: 29–40.PubMedCrossRefGoogle Scholar
  35. 35.
    Mirny, L., & Shakhnovich, E., 2001 Protein folding theory: from lattice to all-atom models. Annu. Rev. Biophys. Biomol. Struct. 30: 361–396.PubMedCrossRefGoogle Scholar
  36. 36.
    Fersht, A.R., & Daggett, V., 2002, Protein folding and unfolding at atomic resolution Cell 108: 573–582.PubMedCrossRefGoogle Scholar
  37. 37.
    Janin, J., 1996, Quantifying biological specificity: the statistical mechanics of molecular recognition. Proteins: Struct. Funct. Genet. 25: 438–445Google Scholar
  38. 38.
    Verkhivker, G.M. & Rejto, P.A., 1996, A mean field model of ligand-protein interactions, Implications for the structural assessment of human immunodeficiency virus type 1 protease complexes and receptor-specific binding. Proc. Natl. Acad. Sci. USA. 93: 60–64.PubMedCrossRefGoogle Scholar
  39. 39.
    Rejto, P.A. & Verkhivker, G.M., 1996, Unraveling principles of lead discovery: from unfrustrated energy landscapes to novel molecular anchors. Proc. Natl. Acad. Sci. USA. 93: 8945–8950.PubMedCrossRefGoogle Scholar
  40. 40.
    Tsai, C.-J., Xu, D., & Nussinov, R., 1998, Protein folding via binding and vice versa. Curr. Biol. 3: R71–R80.Google Scholar
  41. 41.
    Tsai, C.-J., Ma, B., & Nussinov, R., 1999, Folding and binding cascades: shifts in energy landscapes. Proc. Natl. Acad. Sci. USA. 96: 9970–9972.PubMedCrossRefGoogle Scholar
  42. 42.
    Sinha, N., & Nussinov, R., 2001, Point mutations and sequence variability in proteins: Redistributions of preexisting populations. Proc. Natl. Acad. Sci. USA. 98: 3139–3144.PubMedGoogle Scholar
  43. 43.
    Ma, B., Shatsky, M., Wolfson, H.J., & Nussinov, R., 2002, Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci. 11: 184–197.PubMedGoogle Scholar
  44. 44.
    Verkhivker, G.M., Rejto, P,A., Bouzida, D., Arthurs, S., Colson, A.B., Freer, S.T., Gehlhaar, D.K., Larson, V., Luty, B.A., Marrone, T., & Rose, P.W., 1999, Towards understanding the mechanisms of molecular recognition by computer simulations of ligand-protein interactions J. Mol. Recognit. 12: 371–389.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang, C., Chen, J., & DeLisi, C., 1999, Protein-protein recognition: exploring the energy funnels near the binding sites. Proteins: Struct. Funct. Genet. 34: 255–267.Google Scholar
  46. 46.
    Vakser, I.A., Matar, O.G., & Lam, C.F., 1999, A systematic study of lowresolution recognition in protein-protein complexes. Proc. Natl. Acad. Sci. USA. 96: 8477–8482.PubMedCrossRefGoogle Scholar
  47. 47.
    Tovchigrechko, A. & Vakser, I.A., 2001, How common is the funnel-like energy landscape in protein-protein interactions? Protein Sci. 10, 1572–1583.PubMedCrossRefGoogle Scholar
  48. 48.
    Camacho, C.J., Weng, Z., Vajda, S., & DeLisi, C. (1999) Free energy landscapes of encounter complexes in protein-protein association. Biophys. J. 76: 1166–1178.PubMedCrossRefGoogle Scholar
  49. 49.
    Camacho, C.J., Vajda, S., 2001, Protein docking along smooth association pathways. Proc. Natl. Acad. Sci. USA. 98: 10636–10641.PubMedCrossRefGoogle Scholar
  50. 50.
    Verkhivker, G.M., Bouzida, D., Gehlhaar, D.K., Rejto, P,A., Schaffer L, Arthurs, S., Colson, A.B., Freer, S.T., Larson, V., Luty, B.A., Marrone, T., & Rose, P.W., 2001, Hierarchy of simulation models in predicting molecular recognition mechanisms from the binding energy landscapes: structural analysis of the peptide complexes with SH2 domains. Proteins: Struct. Funct. Genet. 45: 456–470.Google Scholar
  51. 51.
    Verkhivker, G.M., Rejto, P,A., Bouzida, D., Arthurs, S., Colson, A.B., Freer, S.T., Gehlhaar, D.K., Larson, V., Luty, B.A., Marrone, T., & Rose, P.W., 2001, Navigating ligand-protein binding free energy landscapes: universality and diversity of protein folding and molecular recognition mechanisms. Chem. Phys. Lett. 336: 495–503.CrossRefGoogle Scholar
  52. 52.
    Verkhivker, G.M., Bouzida, D., Gehlhaar, D.K., Rejto, P.A., Freer, S.T., & Rose, P.W., 2002, Complexity and simplicity of ligand-macromolecule interactions: the energy landscape perspective. Curr. Opin. Struct. Biol. 12: 197–202.PubMedCrossRefGoogle Scholar
  53. 53.
    Verkhivker, G.M., Bouzida, D., Gehlhaar, D.K., Rejto, P,A., Freer, S.T., & Rose, P.W., 2002, Monte Carlo simulations of the peptide recognition at the consensus binding site of the constant fragment of human immunoglobulin G: the energy landscape analysis of a hot spot at the intermolecular interface. Proteins: Struct. Funct. Genet. 48: 539–557.Google Scholar
  54. 54.
    Plaxco, K.W., Simons, K.T., & Baker, D., 1998, Contact order, transition state placement and the refolding rates of single domain protein. J. Mol. Biol. 277: 985–994.PubMedCrossRefGoogle Scholar
  55. 55.
    Grantcharova, V.P., Riddle, D.S., Santiago, J.V., & Baker, D., 1998, Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. Nat. Struct. Biol. 5, 714–720.PubMedCrossRefGoogle Scholar
  56. 56.
    Riddle, D.S., Grantcharova, V.P., Santiago, J.V., Alm, E., Ruczinski, I., & Baker, D., 1999, Experiment and theory highlight role of native state topology in SH3 folding. Nat. Struct. Biol. 6:1016–1024.PubMedGoogle Scholar
  57. 57.
    Martinez, J.C.,& Serrano, L., 1999, The folding transition state between SH3 domains is conformationally restricted and evolutionarily conserved. Nat. Struct. Biol. 6: 1010–1016.PubMedGoogle Scholar
  58. 58.
    Plaxco, K.W., Larson, S., Ruczinski, I., Riddle, D.S., Thayer, E.C., Buchwitz, B., & Davidson, A.R., 2000, Evolutionary conservation in protein folding kinetics. J. Mol. Biol. 298: 303–312.PubMedCrossRefGoogle Scholar
  59. 59.
    Baker, D., 2000, A surprising simplicity to protein folding. Nature 405: 39–42.PubMedCrossRefGoogle Scholar
  60. 60.
    Plaxco, K.W., Simons, K.T., Ruczinski, I., & Baker, D., 2000, Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics. Biochemistry 39: 11177–11183.PubMedCrossRefGoogle Scholar
  61. 61.
    Larson, S,M,, Ruczinski, I., Davidson, A.R., Baker, D., & Plaxco, K.W. 2002, Residues participating in the protein folding nucleus do not exhibit preferential evolutionary conservation. J. Mol. Biol. 316:225–233.PubMedCrossRefGoogle Scholar
  62. 62.
    Fersht, A.R., 2000, Transition-state structure as a unifying basis in proteinfolding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism. Proc. Natl. Acad. Sci. USA. 97: 1525–1529.PubMedGoogle Scholar
  63. 63.
    Galzitskaya, O.V., & Finkelstein, A.V., 1999, Atheoretical search for folding/unfolding nuclei in three-dimensional protein structures. Proc. Natl. Acad. Sci. USA. 96: 11299–11304.PubMedCrossRefGoogle Scholar
  64. 64.
    Alm, E., & Baker. D., 1999, Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures. Proc. Natl. Acad. Sci. USA. 96: 11305–11310.PubMedCrossRefGoogle Scholar
  65. 65.
    Munoz, V., & Eaton W.A., 1999, A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proc. Natl. Acad. Sci. USA. 96: 11311–11316.PubMedCrossRefGoogle Scholar
  66. 66.
    Tsai, J., Levitt, M., & Baker, D., 1999, Hierarchy of structure loss in MD simulations of src SH3 domain unfolding. J. Mol. Biol. 291:215–225.PubMedCrossRefGoogle Scholar
  67. 67.
    Alm, E., & Baker D. (1999). Matching theory and experiment in protein folding. Curr. Opin. Struct. Biol. 9: 189–199.PubMedCrossRefGoogle Scholar
  68. 68.
    Clementi, C., Nymeyer, H. & Onuchic, J., 2000, Topological and energetic factors: what determines the structural details of the transition state ensemble and en-route intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298: 937–953.PubMedCrossRefGoogle Scholar
  69. 69.
    Clementi, C., Jennings, P.A., & Onuchic, J.N., 2000, How native-state topology affects the folding of dihydrofolate reductase and interleukin-1beta. Proc. Natl. Acad. Sci. USA. 97:5871–5876.PubMedCrossRefGoogle Scholar
  70. 70.
    Clementi, C., Jennings, P.A., & Onuchic, J.N., 2001, Prediction of folding mechanism for circular-permuted proteins. J. Mol. Biol. 311: 879–890.PubMedCrossRefGoogle Scholar
  71. 71.
    Vendruscolo, M., Paci, E., Dobson, C.M., & Karplus, M., 2001, Three key residues form a critical contact network in a protein folding transition state. Nature 409: 641–645.PubMedCrossRefGoogle Scholar
  72. 72.
    Ferrara, P., & Caflisch, A., 2001, Native topology or specific interactions: what is more important for protein folding? J. Mol. Biol. 306: 837–850.PubMedCrossRefGoogle Scholar
  73. 73.
    Gsponer, J., & Caflisch, A., 2001, Role of native topology investigated by multiple unfolding simulations of four SH3 domains. J. Mol. Biol. 309: 285–298.PubMedCrossRefGoogle Scholar
  74. 74.
    Gsponer, J., & Caflisch, A., 2002, Molecular dynamics simulations of protein folding from the transition state. Proc. Natl. Acad. Sci. USA. 99: 6719–6724.PubMedCrossRefGoogle Scholar
  75. 75.
    Dokholyan, N.V., Li, L., Ding, F., & Shakhnovich, E.I., 2002, Topological determinants of protein folding. Proc. Natl. Acad. Sci. USA. 99: 8637–8644.PubMedGoogle Scholar
  76. 76.
    Wolynes, P.G., 1997, Folding funnels and energy landscapes of larger proteins within the capillarity approximation. Proc. Natl. Acad. Sci. USA. 94: 6170–6715.PubMedCrossRefGoogle Scholar
  77. 77.
    Shoemaker, B.A., & Wolynes, P.G., 1999, Exploring structures in protein folding funnels with free energy functionals: the denatured ensemble. J. Mol. Biol. 287: 657–674.PubMedGoogle Scholar
  78. 78.
    Shoemaker, B.A., Wang, J., & Wolynes, P.G., 1999, Exploring structures in protein folding funnels with free energy functionals: the transition state ensemble. J. Mol. Biol. 287: 675–694.PubMedGoogle Scholar
  79. 79.
    Portman, J., Takada, S. & Wolynes, P., 2001, Micro-scopic theory of protein folding rates. I. Fine structure of the free energy profile and folding routes from a variational approach. J. Chem. Phys. 114: 5069–5081.Google Scholar
  80. 80.
    Portman, J., Takada, S. & Wolynes, P., 2001, Microscopic theory of protein folding rates. II. Local reaction coordinates and chain dynamics. J. Chem. Phys. 114: 5082–5096.Google Scholar
  81. 81.
    Alm, E,., Morozov, A.V., Kortemme, T., & Baker, D., 2002, Simple physical models connect theory and experiment in protein folding kinetics. J. Mol. Biol. 322: 463–476.PubMedCrossRefGoogle Scholar
  82. 82.
    McCallister, E.L., Alm, E., & Baker, D., 2000, Critical role of beta-hairpin formation in protein G folding. Nat. Struct. Biol. 7: 669–673.PubMedCrossRefGoogle Scholar
  83. 83.
    Nauli, S., Kuhlman, B., & Baker, D., 2001, Computer-based redesign of a protein folding pathway. Nat. Struct. Biol. 8: 602–605.PubMedCrossRefGoogle Scholar
  84. 84.
    Heidary, D.K., & Jennings, P.A., 2002, Three topologically equivalent core residues affect the transition state ensemble in a protein folding reaction. J. Mol. Biol. 316: 789–798.PubMedCrossRefGoogle Scholar
  85. 85.
    Shoemaker, B.A., Portman, J.J., & Wolynes, P.G., 2000, Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc. Natl. Acad. Sci. USA. 97: 8868–8873.PubMedCrossRefGoogle Scholar
  86. 86.
    Duan, Y. & Kollman, P.A., 1998, Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282: 740–744.PubMedCrossRefGoogle Scholar
  87. 87.
    Zagrovic, B., Snow, C.D., Shirts, M.R., & Pande, V.S., 2002, Simulation of folding of a small alpha-helical protein in atomistic detail using world wide distributed computing. J. Mol. Biol. 323: 927–929.PubMedGoogle Scholar
  88. 88.
    Snow, C.D., Nguyen, H., Pande, V.S., & Gruebele, M., 2002, Absolute comparison of simulated and experimental protein-folding dynamics. Nature 420: 102–106.PubMedGoogle Scholar
  89. 89.
    Boczko, E.M., & Brooks III, C.L., 1995, First-principles calculation of the folding free energy of a three-helix bundle protein. Science 269: 393–396.PubMedGoogle Scholar
  90. 90.
    Guo, Z., & Brooks III, C.L. (1997) Thermodynamics of protein folding: a statistical mechanical study of a small all-protein. Biopolymers, 42: 745–757.PubMedCrossRefGoogle Scholar
  91. 91.
    Guo, Z., Brooks III, C.L., & Boczko E.M., 1997, Exploring the folding free energy surface of a three-helix bundle protein. Proc. Natl. Acad. Sci. USA 94: 10161–10166.PubMedGoogle Scholar
  92. 92.
    Sheinerman, F.B., & Brooks III, C.L., 1998, Molecular picture of folding of a small alpha/beta protein. Proc. Natl. Acad. Sci. USA 95: 1562–1567.PubMedCrossRefGoogle Scholar
  93. 93.
    Shea, J.E., Onuchic, J.N., & Brooks III, C.L., 1999, Exploring the origins of topological frustration: design of a minimally frustrated model of fragment B of protein A. Proc. Natl. Acad. Sci. USA 96: 12512–12517.PubMedCrossRefGoogle Scholar
  94. 94.
    Shea, J.E., & Brooks III, C.L., 2001, From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu. Rev. Phys. Chem. 52: 499–535.PubMedCrossRefGoogle Scholar
  95. 95.
    Lazaridis, T., and Karplus, M., 1997, “New view” of protein folding reconciles with the old through multiple unfolding simulations. Science 278: 1928–1931.PubMedCrossRefGoogle Scholar
  96. 96.
    Sheinerman, F. & Brooks III, C.L., 1998, Calculations on folding of segment B1 of streptococcal protein G. J. Mol. Biol. 278:439–456.PubMedCrossRefGoogle Scholar
  97. 97.
    Daggett, V., 2002, Molecular dynamics simulations of the protein unfolding/folding reaction. Acc. Chem. Res. 35:422–429.PubMedCrossRefGoogle Scholar
  98. 98.
    De Jong, D., Riley, R., Alonso, D.O., & Daggett, V., 2002, Probing the energy landscape of protein folding/unfolding transition states. J. Mol. Biol. 319: 229–242.PubMedGoogle Scholar
  99. 99.
    Day, R., Bennion, B.J., Ham, S., & Daggett, V., 2002, Increasing temperature accelerates protein unfolding without changing the pathway of unfolding. J. Mol. Biol. 322:189–203.PubMedCrossRefGoogle Scholar
  100. 100.
    Mayor, U., Johnson, C.M., Daggett, V., & Fersht, A.R., 2000, Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl. Acad. Sci. USA 97: 13518–13522.PubMedCrossRefGoogle Scholar
  101. 101.
    Daggett, V., 2000, Long timescale simulations. Curr. Opin. Struct. Biol. 10:160–164.PubMedCrossRefGoogle Scholar
  102. 102.
    Ladurner, A.G., Itzhaki, L.S., Daggett, V., & Fersht, A.R., 1998, Synergy between simulation and experiment in describing the energy landscape of protein folding. Proc. Natl. Acad. Sci. USA 95:8473–8478.PubMedCrossRefGoogle Scholar
  103. 103.
    Brooks III, C.L,. 1998, Simulations of protein folding and unfolding. Curr. Opin. Struct. Biol. 8: 222–226.PubMedCrossRefGoogle Scholar
  104. 104.
    Pande, V.S., & Rokhsar, D.S., 1999, Molecular dynamics simulations of unfolding and refolding of a beta-hairpin fragment of protein G. Proc. Natl. Acad. Sci. USA 96: 9062–9067.PubMedGoogle Scholar
  105. 105.
    Nymeyer, H., Socci, N.D., & Onuchic, J.N., 2000, Landscape approaches for determining the ensemble of folding transition states: success and failure hinge on the degree of frustration. Proc. Natl. Acad. Sci. USA 97:634–639.PubMedCrossRefGoogle Scholar
  106. 106.
    R. Du, V.S., Pande, A.Y., Grosberg, T., Tanaka, E.S., & Shakhnovich, 1998, On the transition coordinate for protein folding. J. Chem. Phys. 108: 334–350.CrossRefGoogle Scholar
  107. 107.
    Pande, V.S., & Rokshar, D., 1999, Folding pathway of a lattice model for proteins. Proc. Natl. Acad. Sci. USA. 96: 1273–1278.PubMedGoogle Scholar
  108. 108.
    Verkhivker, G.M., Bouzida, D., Gehlhaar, D.K., Rejto, P,A., Freer, S.T., & Rose, P.W., 2003, Simulating disorder-order transitions in molecular recognition of unstructured proteins: where folding meets binding. Proc. Natl. Acad. Sci. USA 100: 5148–5153.PubMedCrossRefGoogle Scholar
  109. 109.
    Mayo, S.L., Olafson, B.D., Goddard, W. A. III., 1990, DREIDING: a generic force field for molecular simulation. J. Phys. Chem. 94: 8897–8909.CrossRefGoogle Scholar
  110. 110.
    Bouzida, D., Kumar, S. and Swendsen, R.H., 1992, Efficient Monte Carlo methods for the computer simulation of biological molecules. Phys. Rev. A 45: 8894–8901.PubMedCrossRefGoogle Scholar
  111. 111.
    Bouzida, D., Rejto, P.A., Arthurs, S., Colson, A.B., Freer, S.T., Gehlhaar, D.K., Larson, V., Luty, B.A., Rose, P.W. and Verkhivker, G.M., 1999, Computer simulations of ligand-protein binding with ensembles of protein conformations: A Monte Carlo study of HIV-1 protease binding energy landscapes. Int. J. Quantum Chem. 72: 73–84.CrossRefGoogle Scholar
  112. 112.
    Bouzida, D., Rejto, P.A. and Verkhivker, G.M., 1999, Monte Carlo simulations of ligand-protein binding energy landscapes with the weighted histogram analysis method. Int. J. Quantum Chem. 73: 113–121.CrossRefGoogle Scholar
  113. 113.
    Willet, P., & Winterman, V., 1986, A Comparison of some measures for the determination of intermolecular structural similarity. Quant. Struct.-Act. Relat. Pharmacol. Chem. Biol. 5: 18–25.Google Scholar
  114. 114.
    Willet, P., Winterman, V., & Bawden, D. (1986) Implementation of non-hierarchical cluster analysis methods in chemical information systems: selection of compounds for biological testing and clustering of substructure search output. J. Chem. Inf. Comput. Sci. 26: 109–118.Google Scholar
  115. 115.
    Bawden D., 1888, Browsing and clustering of chemical structures. In The international language of chemistry, (W.A. Warr, eds.) Springer-Verlag, Berlin, pp. 145–150.Google Scholar
  116. 116.
    Shakhnovich, E.I., 1998, Folding nucleus: specific or multiple ? Insights form lattice models and experiments. Fold. Des. 3: R108–R111.PubMedGoogle Scholar
  117. 117.
    Thirumalai, D. & Klimov, D.K., 1998, Fishing for folding nuclei in lattice models and proteins. Fold. Des. 3: R111–R118.CrossRefGoogle Scholar
  118. 118.
    Li, L., Mirny, L.A., & Shakhnovich, E.I., 2000, Kinetics, thermodynamics and evolution oif non-native interactions in a protein folding nucleus. Nat. Struct. Biol. 7:336–342.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Gennady M. Verkhivker
    • 1
  1. 1.Pfizer Global Research and DevelopmentLa Jolla LaboratoriesSan DiegoUSA

Personalised recommendations