Different Faces of Geometry pp 301-348

Part of the International Mathematical Series book series (IMAT, volume 3) | Cite as

Heegaard Diagrams and Holomorphic Disks

  • Peter Ozsváth
  • Zoltán Szabó

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Akbulut and J. D. McCarthy, Casson’s invariant for oriented homology 3-spheres, Math. Notes 36, Princeton University Press, 1990Google Scholar
  2. 2.
    J. W. Alexander, Topological invariants of knots and links, Trans. Am. Math. Soc. 30 (1928), no. 2, 275–306.MATHMathSciNetGoogle Scholar
  3. 3.
    M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 3, 405–432.MathSciNetMATHGoogle Scholar
  4. 4.
    M. F. Atiyah, Floer homology, in: The Floer Memorial Volume, Birkhüser, 1995, pp. 105–108.Google Scholar
  5. 5.
    D. Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002), 337–370.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    S. Bauer and M. Furuta, A Stable Cohomotopy Refinement of Seiberg-Witten Invariants: I, Preprint, math.DG/0204340.Google Scholar
  7. 7.
    P. Braam and S. K. Donaldson, Floer’s work on instanton homology, knots, and surgery, in: The Floer Memorial Volume, Birkhüser, 1995, pp. 1995–256.Google Scholar
  8. 8.
    M. Culler, C. McA. Gordon, J. Luecke, and P. B. Shalen. Dehn surgery on knots. Ann. of Math, 125(2):237–300, 1987.MathSciNetGoogle Scholar
  9. 9.
    S. Donaldson and I. Smith, Lefschetz pencils and the canonical class for symplectic four-manifolds, Topology 42 (2003), no. 4, 743–785.CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds, Oxford University Press, 1990.Google Scholar
  11. 11.
    S. K. Donaldson, The Seiberg-Witten equations and 4-manifold topology, Bull. Am. Math. Soc. (N.S.) 33(1966), no. 1, 45–70.MathSciNetGoogle Scholar
  12. 12.
    S. K. Donaldson, Floer Homology Groups in Yang-Mills Theory, Cambridge University Press, Cambridge, 2002.MATHGoogle Scholar
  13. 13.
    S. K. Donaldson, Irrationality and the h-cobordism conjecture, J. Differ. Geom. 26 (1987), no. 1, 141–168.MATHMathSciNetGoogle Scholar
  14. 14.
    S. K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990), no. 3, 257–315.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    S. K. Donaldson, Lefschetz pencils on symplectic manifolds, J. Differ. Geom. 53 (1999), no. 2, 205–236.MATHMathSciNetGoogle Scholar
  16. 16.
    S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differ. Geom. 18 (1983), no. 2, 279–315.MATHMathSciNetGoogle Scholar
  17. 17.
    S. Dostoglou and D. A. Salamon, Self-dual instantons and holomorphic curves, Ann. of Math. (2) 139 (1994), no. 3, 581–640.MathSciNetMATHGoogle Scholar
  18. 18.
    E. Eftekhary, Knot Floer homologies for pretzel knots, math.GT/0311419.Google Scholar
  19. 19.
    E. Eftekhary, in preparation, 2004.Google Scholar
  20. 20.
    Ya. M. Eliashberg, Few Remarks about Symplectic Filling, Preprint, math.SG/0311459.Google Scholar
  21. 21.
    Ya. M. Eliashberg and W. P. Thurston, Confoliations, Am. Math. Soc., 1998.Google Scholar
  22. 22.
    N. D. Elkies, A characterization of the Z n lattice, Math. Res. Lett. 2 (1995), no. 3, 321–326.MATHMathSciNetGoogle Scholar
  23. 23.
    J. B. Etnyre, On Symplectic Fillings, Preprint, math.SG/0312091, 2003.Google Scholar
  24. 24.
    P. M. N. Feehan and T. G. Leness, SO(3) monopoles, level-one Seiberg-Witten moduli spaces, and Witten’s conjecture in low degrees, in: Proc. the 1999 Georgia Topology Conference (Athens, G A), Topology Appl., 124 (2002), no. 2, 221–326.Google Scholar
  25. 25.
    R. Fintushel and R. J. Stern, Knots, links, and 4-manifolds, Invent. Math. 134 (1998), no. 2, 363–400.CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    R. Fintushel and R. J. Stern, Seifertfibered homology three-spheres, Proc. London Math. Soc. 61 (1990), 109–137.MathSciNetMATHGoogle Scholar
  27. 27.
    A. Floer, Morse theory for Lagrangian intersections, J. Differ. Geometry, 28, (1988) 513–547.MATHMathSciNetGoogle Scholar
  28. 28.
    A. Floer, An instanton-invariant for 3-manifolds, Comm. Math. Phys. 119 (1988), 215–240.MathSciNetGoogle Scholar
  29. 29.
    A. Floer, Instanton homology and Dehn surgery, in: The Floer Memorial Volume, Birkhüser, 1995, pp. 77–97.Google Scholar
  30. 30.
    A. Floer and H. Hofer, Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993), no. 1, 13–38.MathSciNetMATHGoogle Scholar
  31. 31.
    A. Floer, H. Hofer, and D. Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995), no. 1, 251–290.CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    K. A. Frøyshov, The Seiberg-Witten equations and four-manifolds with boundary, Math. Res. Lett. 3 (1996), 373–390.MATHMathSciNetGoogle Scholar
  33. 33.
    R. Friedman and J. W. Morgan, Smooth Four-Manifolds and Complex Surfaces, Springer-Verlag, 1994.Google Scholar
  34. 34.
    K. Fukaya, Y-G. Oh, K. Ono, and H. Ohta, Lagrangian Intersection Floer Theory—Anomaly and Obstruction, Kyoto University, 2000.Google Scholar
  35. 35.
    M. Furuta, Finite dimensional approximations in geometry, in: Proc. Intern. Congress Math. Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 395–403.Google Scholar
  36. 36.
    D. Gabai, Foliations and the topology of 3-manifolds III, J. Differ. Geom. 26 (1987), no. 3, 479–536.MATHMathSciNetGoogle Scholar
  37. 37.
    H. Goda, H. Matsuda, and T. Morifuji, Knot Floer Homology of (1, 1)-Knots, Preprint, math.GT/0311084.Google Scholar
  38. 38.
    R. E. Gompf and A. I. Stipsicz, 4-manifolds and Kirby calculus, Am. Math. Soc., 1999.Google Scholar
  39. 39.
    C. McA. Gordon and J. Luecke. Knots are determined by their complements. J. Amer. Math. Soc., 2(2):371–415, 1989.MathSciNetMATHGoogle Scholar
  40. 40.
    M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    M. Hutchings and M. Sullivan, The periodic Floer homology of a Dehn twist, http://math.berkeley.edu/hutching/pub/index.htm, 2002.
  42. 42.
    E. Ionel and T. H. Parker, Relative Gromov-Witten invariants, Ann. Math. (2), 157, (2003), no. 1, 45–96.MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    M. Jacobsson, An Invariant of Link Cobordisms from Khovanov’s Homology Theory, Preprint, math.GT/0206303, 2002.Google Scholar
  44. 44.
    L. H. Kauffman, On Knots, Princeton University Press, 1987.Google Scholar
  45. 45.
    L. H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.Google Scholar
  46. 46.
    M. Khovanov, sl(3) Link Homology I, Preprint, math.QA/0304375.Google Scholar
  47. 47.
    M. Khovanov, An invariant of Tangle Cobordisms, Preprint, math.QA/0207264, 2002.Google Scholar
  48. 48.
    M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426.CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    M. Khovanov and L. Rozansky, Matrix Factorizations and Link Homology, Preprint, math.QA/0401268.Google Scholar
  50. 50.
    P. B. Kronheimer and C. Manolescu, Periodic Floer Pro-spectra from the Seiberg-Witten Equations, Preprint, math.GT/0203243.Google Scholar
  51. 51.
    P. B. Kronheimer and T. S. Mrowka, Witten’s Conjecture and Property P, Preprint, math.GT/0311489, 2003.Google Scholar
  52. 52.
    P. B. Kronheimer and T. S. Mrowka, Embedded surfaces and the structure of Donaldson’s polynomial invariants, J. Differ. Geom. 3 (1995), 573–734.MathSciNetGoogle Scholar
  53. 53.
    P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), 797–808.MathSciNetMATHGoogle Scholar
  54. 54.
    P. B. Kronheimer and T. S. Mrowka, Gauge theory for embedded surfaces. I, Topology 32 (1993), no. 4, 773–826.CrossRefMathSciNetMATHGoogle Scholar
  55. 55.
    P. B. Kronheimer and T. S. Mrowka, Floer homology for Seiberg-Witten Monopoles [In preparation.]Google Scholar
  56. 56.
    P. B. Kronheimer and T. S. Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997) no. 2, 209–255.CrossRefMathSciNetMATHGoogle Scholar
  57. 57.
    P. B. Kronheimer, T. S. Mrowka, P. S. Ozsváth, and Z. Szabó, Monopoles and Lens Space Surgeries, Preprint, math.GT/0310164.Google Scholar
  58. 58.
    E. S. Lee, The Support of the Khovanov’s Invariants for Alternating Knots, Preprint, math.GT/0201105, 2002.Google Scholar
  59. 59.
    A-M. Li and Y. Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math. 145 =200. no. 1, 151–218.Google Scholar
  60. 60.
    P. Lisca and A. I. Stipsicz, Heegaard Floer Invariants and Tight Contact Three-Manifolds, Preprint, math.SG/0303280, 2003.Google Scholar
  61. 61.
    C. Livingston, Computations of the Ozsvóth-Szabó Concordance Invariant, Preprint, math.GT/0311036.Google Scholar
  62. 62.
    C. Livingston, Splitting the concordance group of Algebraically slice knots, Geom. Topol. 7 (2003), 641–463.CrossRefMATHMathSciNetGoogle Scholar
  63. 63.
    C. Manolescu, Seiberg-Witten-Floer stable homotopy type of three-manifolds with b 1 = 0, Geom. Topol. 7 (2003), 889–932.CrossRefMATHMathSciNetGoogle Scholar
  64. 64.
    M. Marcolli and B-L. Wang, Equivariant Seiberg-Witten Floer homology, Comm. Anal. Geom. 9 (2001), no. 3, 451–639.MathSciNetMATHGoogle Scholar
  65. 65.
    G. Meng and C. H. Taubes, SW=Milnor torsion, Math. Res. Lett. 3 (1996), 661–674.MathSciNetMATHGoogle Scholar
  66. 66.
    J. M. Montesinos, Surgery on links and double branched covers of S 3, in: Knots, Groups, and 3-Manifolds (Papers dedicated to the memory of R. H. Fox), Princeton Univ. Press, 1975, pp. 227–259.Google Scholar
  67. 67.
    J. W. Morgan, The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifold, Princeton University Press, 1996.Google Scholar
  68. 68.
    J. W. Morgan, T. S. Mrowka, and D. Ruberman, The L 2-Moduli Space and a Vanishing Theorem for Donaldson Polynomial Invariants, International Press, 1994.Google Scholar
  69. 69.
    T. S. Mrowka, P. S. Ozsváth, and B. Yu, Seiberg-Witten Monopoles on Seifert Fibered Spaces, Comm. Analysis and Geometry, 5 (1997), no. 4, 685–793.MATHGoogle Scholar
  70. 70.
    A. Némethi, On the Ozsváth-Szabó Invariant of Negative Definite Plumbed 3-Manifolds, Preprint, math.GT/0310083.Google Scholar
  71. 71.
    B. Owens and S. Strle, Rational Homology Spheres and Four-Ball Genus, Preprint, math.GT/0308073, 2003.Google Scholar
  72. 72.
    P. S. Ozsváth and Z. Szabó, Knots with Unknotting Number One and Heegaard Floer Homology, Preprint, math.GT/0401426.Google Scholar
  73. 73.
    P. S. Ozsváth and Z. Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003), 185–224.MathSciNetMATHGoogle Scholar
  74. 74.
    P. S. Ozsváth and Z. Szabó, On knot Floer Homology and Lens Space Surgeries, Preprint, math.GT/0303017.Google Scholar
  75. 75.
    P. S. Ozsváth and Z. Szabó“ Knot Floer Homology, Genus Bounds, and Mutation, Preprint, math.GT/0303225, 2003.Google Scholar
  76. 76.
    P. S. Ozsváth and Z. Szabó, Holomorphic Disks and Knot Invariants, Preprint, math.GT/0209056, 2002.Google Scholar
  77. 77.
    P. S. Ozsváth and Z. Szabó, Holomorphic Disks and Genus Bounds, Preprint, math.GT/0311496, 2003.Google Scholar
  78. 78.
    P. S. Ozsváth and Z. Szabó, Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003), 225–254 (electronic).MathSciNetGoogle Scholar
  79. 79.
    P. S. Ozsváth and Z. Szabó, On the Heegaard Floer Homology of Branched Double-Covers, Preprint, math.GT/0309170, 2003.Google Scholar
  80. 80.
    P. S. Ozsváth and Z. Szabó, Heegaard Floer Homologies and Contact Structures, Preprint, math.SG/0210127, 2002.Google Scholar
  81. 81.
    P. S. Ozsváth and Z. Szabó, Holomorphic Disk Invariants for Symplectic Four-Manifolds, Preprint, math.SG/0201059, 2002.Google Scholar
  82. 82.
    P. S. Ozsváth and Z. Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179–261.MathSciNetMATHGoogle Scholar
  83. 83.
    P. S. Ozsváth and Z. Szabó, Holomorphic Triangles and Invariants for Smooth Four-Manifolds, Preprint, math.SG/0110169.Google Scholar
  84. 84.
    P. S. Ozsváth and Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications, math.SG/0105202. [To appear in Ann. Math.]Google Scholar
  85. 85.
    P. S. Ozsváth and Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, math.SG/0101206. [To appear in Ann. Math.]Google Scholar
  86. 86.
    P. S. Ozsváth and Z. Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003), 615–639.MathSciNetMATHGoogle Scholar
  87. 87.
    O. Plamenevskaya, Bounds for Thurston-Bennequin Number from Floer Homology, Preprint, math.SG/0311090, 2003.Google Scholar
  88. 88.
    J. A. Rasmussen, Floer Homology and Knot Complements, Preprint, math.GT/0306378, 2003.Google Scholar
  89. 89.
    J. A. Rasmussen, Khovanov Homology and the Slice Genus, Preprint, 2003.Google Scholar
  90. 90.
    J. A. Rasmussen, Floer homology of surgeries on two-bridge knots, Algebr. Geom. Topol. 2 (2002), 757–789 (electronic).CrossRefMATHMathSciNetGoogle Scholar
  91. 91.
    J. Robbin and D. Salamon, The Maslov index for paths, Topology 32 (1993), no. 4, 827–844.CrossRefMathSciNetMATHGoogle Scholar
  92. 92.
    L. Rudolph, Quasipositivity as an obstruction tosliceness, Bull. Am. Math. Soc. (N.S.), 29 (1993), no. 1, 51–59.MATHMathSciNetCrossRefGoogle Scholar
  93. 93.
    R. Rustamov, Calculation of Heegaard Floer Homology for a Class of Brieskorn Spheres, Preprint, math.SG/0312071, 2003.Google Scholar
  94. 94.
    D. Salamon, Lagrangian intersections, 3-manifold with boundary, and the Atiyah-Floer conjecture, in Proc. Intern. Congress Math., Birkhäuser, 1994, pp. 526–536.Google Scholar
  95. 95.
    N. Saveliev, Lectures on the Topology of 3-Manifolds, Walter de Gruyter & Co., Berlin, 1999.Google Scholar
  96. 96.
    P. Seidel, Vanishing cycles and mutation, in: European Congress Math. Vol. II (Barcelona, 2000), Birkhäuser, Basel, 2001, pp. 65–85Google Scholar
  97. 97.
    P. Seidel, The symplectic Floer homology of a Dehn twist, Math. Res. Lett. 3, (1996), no. 6, 829–834.MATHMathSciNetGoogle Scholar
  98. 98.
    P. Seidel, A long exact sequence for symplectic Floer cohomology, Topology 42 (2003), no. 5, 1003–1063.CrossRefMATHMathSciNetGoogle Scholar
  99. 99.
    J. Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Am. Math. Soc., 35 (1933), no. 1, 88–111.MATHGoogle Scholar
  100. 100.
    C. H. Taubes, Casson’s invariant and gauge theory, J. Differ. Geom., 31 (1990), no. 2, 547–599.MATHMathSciNetGoogle Scholar
  101. 101.
    C. H. Taubes, Seiberg Witten and Gromov invariants for symplectic 4-manifolds, International Press, 2000.Google Scholar
  102. 102.
    C. H. Taubes, Seiberg-Witten invariants, self-dual harmonic 2-forms and the Hofer-Wysocki-Zehnder formalism, in: Surveys in Differential Geometry, Int. Press, Somerville, MA, 2000, pp. 625–672.Google Scholar
  103. 103.
    C. H. Taubes, Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), no. 6, 809–822.MATHMathSciNetGoogle Scholar
  104. 104.
    C. H. Taubes, More constraints on symplectic forms from Seiberg-Witten invariants, Math. Res. Lett. 2 (1995), no. 1, 9–13.MATHMathSciNetGoogle Scholar
  105. 105.
    V. Turaev, Torsion invariants of Spin c-structures on 3-manifolds, Math. Res. Lett. 4 (1997), 679–695.MATHMathSciNetGoogle Scholar
  106. 106.
    K. Wehrheim, Anti-self-dual instantonts with Lagrangian boundary conditions, Swiss Federal Institute of Technology, Zürich, 2002.Google Scholar
  107. 107.
    E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), 769–796.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  • Peter Ozsváth
    • 1
    • 2
  • Zoltán Szabó
    • 3
  1. 1.Columbia UniversityNew YorkUSA
  2. 2.Institute for Advanced StudyPrincetonUSA
  3. 3.Princeton UniversityUSA

Personalised recommendations