Ceramide Signaling under Oxidative Stress

  • Tzipora Goldkorn
  • Tommer Ravid
  • Edward A Medina


Oxidative Stress Nitric Oxide Ceramide Level Bcl2 Overexpression Ceramide Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hoidal, J. R. 2001. Reactive oxygen species and cell signaling. Am J Respir Cell Mol Biol 25:661–3.PubMedGoogle Scholar
  2. 2.
    Schreck, R., P. Rieber and P. A. Baeuerle. 1991. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κ B transcription factor and HIV-1. Embo J 10:2247–58.PubMedGoogle Scholar
  3. 3.
    Sen, C. K. and L. Packer. 1996. Antioxidant and redox regulation of gene transcription. Faseb J 10:709–20.PubMedGoogle Scholar
  4. 4.
    Adler, K. B., B. M. Fischer, D. T. Wright, L. A. Cohn and S. Becker. 1994. Interactions between respiratory epithelial cells and cytokines: relationships to lung inflammation. Ann N Y Acad Sci 725:128–45.PubMedGoogle Scholar
  5. 5.
    Cross, C. E., A. van der Vliet, C. A. O’Neill and J. P. Eiserich. 1994. Reactive oxygen species and the lung. Lancet. 344:930–3.PubMedCrossRefGoogle Scholar
  6. 6.
    Yamaya, M., K. Sekizawa, T. Masuda, M. Morikawa, T. Sawai and H. Sasaki. 1995. Oxidants affect permeability and repair of the cultured human tracheal epithelium. Am J physiol 268:L284–93.PubMedGoogle Scholar
  7. 7.
    Jobsis, Q., H. C. Raatgeep, P. W. Hermans and J. C. de Jongste. 1997. Hydrogen peroxide in exhaled air is increased in stable asthmatic children. Eur Respir J 10:519–21.PubMedGoogle Scholar
  8. 8.
    Worlitzsch, D., G. Herberth, M. Ulrich and G. Doring. 1998. Catalase, mycloperoxidase and hydrogen peroxide in cystic fibrosis. Eur Respir J 11:377–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Halliwell, B. and J. M. Gutteridge. 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85.PubMedGoogle Scholar
  10. 10.
    Goldkorn, T., N. Balaban, K. Matsukuma, V. Chea, R. Gould, J. Last, C. Chan and C. Chavez. 1998. EGF-Receptor phosphorylation and signaling are targeted by H2O2 redox stress. Am J Respir Cell Mol Biol 19:786–98.PubMedGoogle Scholar
  11. 11.
    Ravid, T., C. Sweeney, P. Gee, K. R. K. Carraway and T. Goldkorn. 2002. EGF receptor activation under oxidative stress fails to promote c-Cbl mediated down regulation. J Biol Chem 12:12.Google Scholar
  12. 12.
    Goldkorn, T., N. Balaban, M. Shannon, V. Chea, K. Matsukuma, D. Gilchrist, H. Wang and C. Chan. 1998. H2O2 acts on cellular membranes to generate ceramide signaling and initiate apoptosis in tracheobronchial epithelial cells. J Cell Sci 111:3209–20PubMedGoogle Scholar
  13. 13.
    Chan, C. and T. Goldkorn. 2000. Ceramide path in human lung cell death. Am J Respir Cell Mol Biol 22:460–8.PubMedGoogle Scholar
  14. 14.
    Lavrentiadou, S. N., C. Chan, T. N. Kawcak, T. Ravid, A. Tsaba, A. van der Vliet, R. Rasooly and T. Goldkorn. 2001. Ceramide-Mediated Apoptosis in Lung Epithelial Cells Is Regulated by Glutathione. Am. J. Respir. Cell Mol. Biol. 25:676–684.PubMedGoogle Scholar
  15. 15.
    Cadenas, E. and H. Sies. 2000. Formation of electronically excited states during the oxidation of arachidonic acid by prostaglandin endoperoxide synthase. Methods Enzymol 319:67–77.PubMedGoogle Scholar
  16. 16.
    Garcia-Ruiz, C., A. Colell, M. Mari, A. Morales and J. C. Fernandez-Checa. 1997. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem 272:11369–77.PubMedGoogle Scholar
  17. 17.
    Thannickal, V. J. and B. L. Fanburg. 2000. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–28.PubMedGoogle Scholar
  18. 18.
    Levade, T. and J. P. Jaffrezou. 1999. Signalling sphingomyelinases: which, where, how and why? Biochim Biophys Acta 1438:1–17.PubMedGoogle Scholar
  19. 19.
    Singh, I., K. Pahan, M. Khan and A. K. Singh. 1998. Cytokine-mediated induction of ceramide production is redox-sensitive. Implications to proinflammatory cytokine-mediated apoptosis in demyelinating diseases. J Biol Chem 273:20354–62.PubMedGoogle Scholar
  20. 20.
    Cross, C. E., A. van der Vliet, S. Louie, J. J. Thiele and B. Halliwell. 1998. Oxidative stress and antioxidants at biosurfaces: plants, skin, and respiratory tract surfaces. Environ Health Perspect 106 Suppl 5:1241–51.PubMedGoogle Scholar
  21. 21.
    Liu, B., N. Andrieu-Abadie, T. Levade, P. Zhang, L. M. Obeid and Y. A. Hannun. 1998. Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-α-induced cell death. J Biol Chem 273:11313–20.PubMedGoogle Scholar
  22. 22.
    Macho, A., T. Hirsch, I. Marzo, P. Marchetti, B. Dallaporta, S. A. Susin, N. Zamzami and G. Kroemer. 1997. Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J Immunol 158:4612–9.PubMedGoogle Scholar
  23. 23.
    Ghibelli, L., S. Coppola, C. Fanelli, G. Rotilio, P. Civitareale, A. I. Scovassi and M. R. Ciriolo. 1999. Glutathione depletion causes cytochrome c release even in the absence of cell commitment to apoptosis. Faseb J 13:2031–6.PubMedGoogle Scholar
  24. 24.
    Baker, A., B. D. Santos and G. Powis. 2000. Redox Control of Caspase-3 Activity by Thioredoxin and Other Reduced Proteins. Biochem Biophys Res Commun 268:78–81.PubMedCrossRefGoogle Scholar
  25. 25.
    Williams, K. R., E. K. Spicer, M. B. LoPresti, R. A. Guggenheimer and J. W. Chase. 1983. Limited proteolysis studies on the Escherichia coli single-stranded DNA binding protein. Evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA binding proteins. J Biol Chem 258:3346–55.PubMedGoogle Scholar
  26. 26.
    Sznajder, J. I., A. Fraiman, J. B. Hall, W. Sanders, G. Schmidt, G. Crawford, A. Nahum, P. Factor and L. D. Wood. 1989. Increased hydrogen peroxide in the expired breath of patients with acute hypoxemic respiratory failure. Chest 96:606–12.PubMedGoogle Scholar
  27. 27.
    Loukides, S., I. Horvath, T. Wodehouse, P. J. Cole and P. J. Barnes. 1998. Elevated levels of expired breath hydrogen peroxide in bronchiectasis. Am J Respir Crit Care Med 158:991–4.PubMedGoogle Scholar
  28. 28.
    Dekhuijzen, P. N., K. K. Aben, I. Dekker, L. P. Aarts, P. L. Wielders, C. L. van Herwaarden and A. Bast. 1996. Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 154:813–6.PubMedGoogle Scholar
  29. 29.
    Nowak, D., J. Heinrich, R. Jorres, G. Wassmer, J. Berger, E. Beck, S. Boczor, M. Claussen, H. E. Wichmann and H. Magnussen. 1996. Prevalence of respiratory symptoms, bronchial hyperresponsiveness and atopy among adults: west and east Germany. Eur Respir J 9:2541–52.PubMedGoogle Scholar
  30. 30.
    Hannun, Y. A. 1996. Functions of ceramide in coordinating cellular responses to stress. Science 274:1855–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Spiegel, S. and A. H. Merrill, Jr. 1996. Sphingolipid metabolism and cell growth regulation. Faseb J 10:1388–97.PubMedGoogle Scholar
  32. 32.
    Hannun, Y. A. and C. Luberto. 2000. Ceramide in the eukaryotic stress response. Trends Cell Biol 10:73–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Merrill, A. H., Jr., E. Wang, R. LaRocque, R. E. Mullins, E. T. Morgan, J. L. Hargrove, H. L. Bonkovsky and I. A. Popova. 1992. Differences in glycogen, lipids, and enzymes in livers from rats flown on COSMOS 2044. J Appl Physiol 73:142S–147S.PubMedGoogle Scholar
  34. 34.
    Michel, C. and G. van Echten-Deckert. 1997. Conversion of dihydroceramide to ceramide occurs at the cytosolic face of the endoplasmic reticulum. FEBS Lett 416:153–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Kolter, T., R. L. Proia and K. Sandhoff. 2002. Combinatorial Ganglioside Biosynthesis. J. Biol. Chem. 277:25859–25862.PubMedCrossRefGoogle Scholar
  36. 36.
    Hannun, Y. A., C. Luberto and K. M. Argraves. 2001. Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 40:4893–903.PubMedCrossRefGoogle Scholar
  37. 37.
    Riley, R. T., E. Enongene, K. A. Voss, W. P. Norred, F. I. Meredith, R. P. Sharma, J. Spitsbergen, D. E. Williams, D. B. Carlson and A. H. Merrill, Jr. 2001. Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis. Environ Health Perspect 109: 301–8.PubMedGoogle Scholar
  38. 38.
    Kolesnick, R. and Y. A. Hannun. 1999. Ceramide and apoptosis. Trends Biochem Sci 24:224–5; discussion 227.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang, H., N. E. Buckley, K. Gibson and S. Spiegel. 1990. Sphingosine stimulates cellular proliferation via a protein kinase C-independent pathway. J Biol Chem 265:76–81.PubMedGoogle Scholar
  40. 40.
    Zhang, H., N. N. Desai, A. Olivera, T. Seki, G. Brooker and S. Spiegel. 1991. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol 114:155–67.PubMedCrossRefGoogle Scholar
  41. 41.
    Cuvillier, O., D. S. Rosenthal, M. E. Smulson and S. Spiegel. 1998. Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas-and ceramide-mediated apoptosis in Jurkat T lymphocytes. J Biol Chem 273:2910–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Su, Y., D. Rosenthal, M. Smulson and S. Spiegel. 1994. Sphingosine 1-phosphate, a novel signaling molecule, stimulates DNA binding activity of AP-1 in quiescent Swiss 3T3 fibroblasts. J Biol Chem 269:16512–7.PubMedGoogle Scholar
  43. 43.
    Lee, M. J., S. Thangada, K. P. Claffey, N. Ancellin, C. H. Liu, M. Kluk, M. Volpi, R. I. Sha’afi and T. Hla. 1999. Vascular endothelial cell adherens junction assembly and morphogenesis induced by Sphingosine-1-phosphate. Cell 99:301–12.PubMedGoogle Scholar
  44. 44.
    Pyne, S. and N. Pyne. 2000. Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein-coupled receptors. Pharmacol Ther 88:115–31.PubMedCrossRefGoogle Scholar
  45. 45.
    Spiegel, S. and S. Milstien. 2000. Sphingosine-1-phosphate: signaling inside and out. FEES Lett 476:55–7.CrossRefGoogle Scholar
  46. 46.
    Olivera, A. and S. Spiegel. 2001. Sphingosine kinase: a mediator of vital cellular functions. Prostaglandins Other Lipid Medial 64:123–34.Google Scholar
  47. 47.
    Dbaibo, G. S., D. K. Perry, C. J. Gamard, R. Platt, G. G. Poirier, L. M. Obeid and Y. A. Hannun. 1997. Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosisfactor (TNF)-α:CrmA and Bcl-2 target distinct components in the apoptotic pathway. J Exp Med 185:481–90.PubMedCrossRefGoogle Scholar
  48. 48.
    Ravid, T., A. Tsaba, R. Rasooly, E. Medina and T. Goldkorn. 2002. Ceramide accumulation precedes caspase-3 activation during apoptosis of A549 human lung adenocarcinoma cells. Am. J. Physiol. Lung. Cell. Mol. Physiol (submitted).Google Scholar
  49. 49.
    Obeid, L. M., C. M. Linardic, L. A. Karolak and Y. A. Hannun. 1993. Programmed cell death induced by ceramide. Science 259:1769–71.PubMedGoogle Scholar
  50. 50.
    Jarvis, W. D., A. J. Turner, L. F. Povirk, R. S. Traylor and S. Grant. 1994. Induction of apoptotic DNA fragmentation and cell death in HL-60 human promyelocytic leukemia cells by pharmacological inhibitors of protein kinase C. Cancer Res 54:1707–14.PubMedGoogle Scholar
  51. 51.
    Quintans, J., J. Kilkus, C. L. McShan, A. R. Gottschalk and G. Dawson. 1994. Ceramide mediates the apoptotic response of WEHI 231 cells to anti-immunoglobulin, corticosteroids and irradiation. Biochem Biophys Res Commun 202:710–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Cifone, M. G., R. De Maria, P. Roncaioli, M. R. Rippo, M. Azuma, L. L. Lanier, A. Santoni and R. Testi. 1994. Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med 180:1547–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Bielawska, A., C. M. Linardic and Y. A. Hannun. 1992. Modulation of cell growth and differentiation by ceramide. FEBS Lett 307:211–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Hannun, Y. A. 1994. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 269:3125–8.PubMedGoogle Scholar
  55. 55.
    Jayadev, S., B. Liu, A. E. Bielawska, J. Y. Lee, F. Nazaire, M. Pushkareva, L. M. Obeid and Y. A. Hannun. 1995. Role for ceramide in cell cycle arrest. J Biol Chem 270:2047–52.PubMedCrossRefGoogle Scholar
  56. 56.
    Jarvis, W. D., R. N. Kolesnick, F. A. Fornari, R. S. Traylor, D. A. Gewirtz and S. Grant. 1994. Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway. Proc Natl Acad Sci USA 91:73–7.PubMedGoogle Scholar
  57. 57.
    Strum, J. C., G. W. Small, S. B. Pauig and L. W. Daniel. 1994. 1-beta-D-Arabinofuranosylcytosine stimulates ceramide and diglyceride formation in HL-60 cells. J Biol Chem 269:15493–7.PubMedGoogle Scholar
  58. 58.
    Haimovitz-Friedman, A., C. C. Kan, D. Ehleiter, R. S. Persaud, M. McLoughlin, Z. Fuks and R. N. Kolesnick. 1994. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180:525–35.PubMedCrossRefGoogle Scholar
  59. 59.
    Tepper, C. G., S. Jayadev, B. Liu, A. Bielawska, R. Wolff, S. Yonehara, Y. A. Hannun and M. F. Seldin. 1995. Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity. Proc Natl Acad Sci USA 92:8443–7.PubMedGoogle Scholar
  60. 60.
    Lavie, Y., H. Cao, A. Volner, A. Lucci, T. Y. Han, V. Geffen, A. E. Giuliano and M. C. Cabot. 1997. Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J Biol Chem 272:1682–7.PubMedGoogle Scholar
  61. 61.
    Liu, Y. Y., T. Y. Han, A. E. Giuliano and M. C. Cabot. 1999. Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J Biol Chem 274:1140–6.PubMedGoogle Scholar
  62. 62.
    Schutze, S., K. Potthoff, T. Machleidt, D. Berkovic, K. Wiegmann and M. Kronke. 1992. TNF activates NF-κ-B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71:765–76.PubMedCrossRefGoogle Scholar
  63. 63.
    Lawler, J. F., Jr., M. Yin, A. M. Diehl, E. Roberts and S. Chatterjee. 1998. Tumor necrosis factor-α stimulates the maturation of sterol regulatory element binding protein-1 in human hepatocytes through the action of neutral sphingomyelinase. J Biol Chem 273:5053–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Wiegmann, K., S. Schutze, T. Machleidt, D. Witte and M. Kronke. 1994. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78:1005–15.PubMedCrossRefGoogle Scholar
  65. 65.
    Okazaki, T., A. Bielawska, N. Domae, R. M. Bell and Y. A. Hannun. 1994. Characteristics and partial purification of a novel cytosolic, magnesium-independent, neutral sphingomyelinase activated in the early signal transduction of 1 α,25-dihydroxyvitamin D3-induced HL-60 cell differentiation [published erratum appears in J Biol Chem 1994 Jun 10;269(23):16518]. J Biol Chem 269:4070–7.PubMedGoogle Scholar
  66. 66.
    Otterbach, B. and W. Stoffel. 1995. Acid sphingomyelinase-deficient mice mimic the neurovisceral form of human lysosomal storage disease (Niemann-Pick disease). Cell 81:1053–61.PubMedCrossRefGoogle Scholar
  67. 67.
    Quintern, L. E., E. H. Schuchman, O. Levran, M. Suchi, K. Ferlinz, H. Reinke, K. Sandhoff and R. J. Desnick. 1989. Isolation of cDNA clones encoding human acid sphingomyelinase: occurrence of alternatively processed transcripts. Embo J 8:2469–73.PubMedGoogle Scholar
  68. 68.
    Liu, B. and Y. A. Hannun. 1997. Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J Biol Chem 272:16281–7.PubMedGoogle Scholar
  69. 69.
    Samet, D. and Y. Barenholz. 1999. Characterization of acidic and neutral sphingomyelinase activities in crude extracts of HL-60 cells. Chem Phys Lipids 102:65–77.PubMedGoogle Scholar
  70. 70.
    Cheng, Y., A. Nilsson, E. Tomquist and R. D. Duan. 2002. Purification, characterization, and expression of rat intestinal alkaline sphingomyelinase. J Lipid Res 43:316–24.PubMedGoogle Scholar
  71. 71.
    Kolesnick, R. N. and M. Kronke. 1998. Regulation of ceramide production and apoptosis. Annu Rev Physiol 60:643–65.PubMedCrossRefGoogle Scholar
  72. 72.
    Segui, B., C. Bezombes, E. Uro-Coste, J. A. Medin, N. Andrieu-Abadie, N. Auge, A. Brouchet, G. Laurent, R. Salvayre, J. P. Jaffrezou and T. Levade. 2000. Stress-induced apoptosis is not mediated by endolysosomal ceramide. Faseb J 14:36–47.PubMedGoogle Scholar
  73. 73.
    Andrieu-Abadie, N., V. Gouaze, R. Salvayre and T. Levade. 2001. Ceramide in apoptosis signaling: relationship with oxidative stress. Free Radio Biol Med 31:717–28.Google Scholar
  74. 74.
    Bezombes, C., B. Segui, O. Cuvillier, A. P. Bruno, E. Uro-Coste, V. Gouaze, N. Andrieu-Abadie, S. Carpentier, G. Laurent, R. Salvayre, J. P. Jaffrezou and T. Levade. 2001. Lysosomal sphingomyelinase is not solicited for apoptosis signaling. Faseb J 15:297–9.PubMedGoogle Scholar
  75. 75.
    El Bawab, S., J. Usta, P. Roddy, Z. M. Szulc, A. Bielawska and Y. A. Hannun. 2002. Substrate specificity of rat brain ceramidase. J Lipid Res 43:141–8.PubMedGoogle Scholar
  76. 76.
    Mao, C., R. Xu, Z. M. Szulc, A. Bielawska, S. H. Galadari and L. M. Obeid. 2001. Cloning and characterization of a novel human alkaline ceramidase. A mammalian enzyme that hydrolyzes phytoceramide. J Biol Chem 276:26577–88.PubMedGoogle Scholar
  77. 77.
    Gatt, S. 1966. Enzymatic hydrolysis of sphingolipids. I. Hydrolysis and synthesis of ceramides by an enzyme from rat brain. J Biol Chem 241:3724–30.PubMedGoogle Scholar
  78. 78.
    Tani, M., N. Okino, S. Mitsutake, T. Tanigawa, H. Izu and M. Ito. 2000. Purification and Characterization of a Neutral Ceramidase from Mouse Liver. A Single Protein Catalyzes The Reversible Reaction In Which Ceramide Is Both Hydrolyzed And Synthesized. J. Biol. Chem. 275:3462–3468.PubMedGoogle Scholar
  79. 79.
    El Bawab, S., H. Birbes, P. Roddy, Z. M. Szulc, A. Bielawska and Y. A. Hannun. 2001. Biochemical characterization of the reverse activity of rat brain ceramidase. A CoA-independent and fumonisin B1-insensitive ceramide synthase. J Biol Chem 276:16758–66.PubMedGoogle Scholar
  80. 80.
    Perry, D. K. 2000. The role of de novo ceramide synthesis in chemotherapy-induced apoptosis. Ann N Y Acad Sci 905:91–6.PubMedGoogle Scholar
  81. 81.
    Hannun, Y. A. and L. M. Obeid. 2002. The Ceramide-centric Universe of Lipid-mediated Cell Regulation: Stress Encounters of the Lipid Kind. J Biol Chem 277:25847–50.PubMedCrossRefGoogle Scholar
  82. 82.
    Birbes, H., S. E. Bawab, L. M. Obeid and Y. A. Hannun. 2002. Mitochondria and ceramide: intertwined roles in regulation of apoptosis. Adv Enzyme Regul 42:113–29.PubMedGoogle Scholar
  83. 83.
    Birbes, H., S. El Bawab, Y. A. Hannun and L. M. Obeid. 2001. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. Faseb J 15:2669–79.PubMedCrossRefGoogle Scholar
  84. 84.
    Bose, R., M. Verheij, A. Haimovitz-Friedman, K. Scotto, Z. Fuks and R. Kolesnick. 1995. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82:405–14.PubMedCrossRefGoogle Scholar
  85. 85.
    Kalen, A., R. A. Borchardt and R. M. Bell. 1992. Elevated ceramide levels in GH4C1 cells treated wit retinoic acid. Biochim Biophys Acta 1125:90–6.PubMedGoogle Scholar
  86. 86.
    Plo, I., S. Ghandour, A. C. Feutz, M. Clanet, G. Laurent and A. Bettaieb. 1999. Involvement of de novo ceramide biosynthesis in lymphotoxin-induced oligodendrocyte death. Neuroreport 10:2373–6.PubMedGoogle Scholar
  87. 87.
    Liao, W. C., A. Haimovitz-Friedman, R. S. Persaud, M. McLoughlin, D. Ehleiter, N. Zhang, M. Gatei, M. Lavin, R. Kolesnick and Z. Fuks. 1999. Ataxia telangiectasia-mutated gene product inhibits DNA damage-induced apoptosis via ceramide synthase. J Biol Chem 274:17908–17.PubMedGoogle Scholar
  88. 88.
    Lehtonen, J. Y., M. Horiuchi, L. Daviet, M. Akishita, and V. J. Dzau. 1999. Activation of the de novo biosynthesis of sphingolipids mediates angiotensin II type 2 receptor-induced apoptosis. J Biol Chem 274:16901–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Xu, J., C. H. Yeh, S. Chen, L. He, S. L. Sensi, L. M. Canzoniero, D. W. Choi and C. Y. Hsu. 1998. Involvement of de novo ceramide biosynthesis in tumor necrosis factor-α/cycloheximide-induced cerebral endothelial cell death. J Biol Chem 273:16521–6.PubMedGoogle Scholar
  90. 90.
    Selzner, M., A. Bielawska, M. A. Morse, H. A. Rudiger, D. Sindram, Y. A. Hannun and P. A. Clavien. 2001. Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res 61:1233–40.PubMedGoogle Scholar
  91. 91.
    Yoshimura, S., Y. Banno, S. Nakashima, K. Takenaka, H. Sakai, Y. Nishimura, N. Sakai, S. Shimizu, Y. Eguchi, Y. Tsujimoto and Y. Nozawa. 1998. Ceramide formation leads to caspase-3 activation during hypoxic PC12 cell death. Inhibitory effects of Bcl-2 on ceramide formation and caspase-3 activation. J Biol Chem 273:6921–7.PubMedCrossRefGoogle Scholar
  92. 92.
    De Maria, R., M. R. Rippo, E. H. Schuchman and R. Testi. 1998. Acidic Sphingomyelinase (ASM) Is Necessary for Fas-induced GD3 Ganglioside Accumulation and Efficient Apoptosis of Lymphoid Cells. J. Exp. Med. 187:897–902.PubMedGoogle Scholar
  93. 93.
    Verheij, M., R. Bose, X. H. Lin, B. Yao, W. D. Jarvis, S. Grant, M. J. Birrer, E. Szabo, L. I. Zon, J. M. Kyriakis, A. Haimovitz-Friedman, Z. Fuks and R. N. Kolesnick. 1996. Requirement for ceramide-initiated SAPK/JNK. signalling in stress-induced apoptosis. Nature 380:75–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Ueda, N., S. M. Camargo, X. Hong, A. G. Basnakian, P. D. Walker and S. V. Shah. 2001. Role of ceramide synthase in oxidant injury to renal tubular epithelial cells. J Am Soc Nephrol 12:2384–91.PubMedGoogle Scholar
  95. 95.
    Ueda, N., G. P. Kaushal, X. Hong and S. V. Shah, 1998. Role of enhanced ceramide generation in DNA damage and cell death in chemical hypoxic injury to LLC-PK1 cells. Kidney Int 54:399–406.PubMedCrossRefGoogle Scholar
  96. 96.
    Zager, R. A., K. M. Burkhart and A. Johnson. 2000. Sphingomyelinase and membrane sphingomyelin content: determinants of Proximal tubule cell susceptibility to injury. J Am Soc Nephrol 11:894–902.PubMedGoogle Scholar
  97. 97.
    Zager, R. A., D. S. Conrad and K. Burkhart. 1998. Ceramide accumulation during oxidant renal tubular injury: mechanisms and potential consequences. J Am Soc Nephrol 9:1670–80.PubMedGoogle Scholar
  98. 98.
    Jacobson, M. D. 1996. Reactive oxygen species and programmed cell death. Trends Biochem Sci 21:83–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Huwiler, A., S. Dorsch, V. A. Briner, H. van den Bosch and J. Pfeilschifter. 1999. Nitric oxide stimulates chronic ceramide formation in glomerular endothelial cells. Biochem Biophys Res Commun 258:60–5.PubMedCrossRefGoogle Scholar
  100. 100.
    Huwiler, A., J. Pfeilschifter and H. van den Bosch. 1999. Nitric oxide donors induce stress signaling via ceramide formation in rat renal mesangial cells. J Biol Chem 274:7190–5.PubMedCrossRefGoogle Scholar
  101. 101.
    Wink, D. A. and J. B. Mitchell. 1998. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25:434–56.PubMedCrossRefGoogle Scholar
  102. 102.
    De Nadai, C., P. Sestili, O. Cantoni, J. P. Lievremont, C. Sciorati, R. Barsacchi, S. Moncada, J. Meldolesi and E. Clementi. 2000. Nitric oxide inhibits tumor necrosis factor-α-induced apoptosis by reducing the generation of ceramide. Proc Natl Acad Sci USA 97:5480–5.PubMedGoogle Scholar
  103. 103.
    Lievremont, J. P., C. Sciorati, E. Morandi, C. Paolucci, G. Bunone, G. Delia Valle, J. Meldolesi and E. Clementi. 1999. The p75(NTR)-induced apoptotic program develops through a ceramide-caspase pathway negatively regulated by nitric oxide. J Biol Chem 274:15466–72.PubMedCrossRefGoogle Scholar
  104. 104.
    Paolucci, C., P. Rovere, C. De Nadai, A. A. Manfredi and E. Clementi. 2000. Nitric oxide inhibits the tumor necrosis factor α-regulated endocytosis of human dendritic cells in a cyclic GMP-dependent Way. J. Biol. Chem. 275:19638–19644.PubMedCrossRefGoogle Scholar
  105. 105.
    Vann, L. R., S. Twitty, S. Spiegel and S. Milstien. 2000. Divergence in regulation of nitric-oxide synthase and its cofactor tetrahydrobiopterin by tumor necrosis factor-alpha. Ceramide potentiates nitric oxide synthesis without affecting GTP cyclohydrolase I activity. J Biol Chem 275:13275–81.PubMedCrossRefGoogle Scholar
  106. 106.
    Knapp, K. M. and B. K. English. 2000. Ceramide-mediated stimulation of inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF) accumulation in murine macrophages requires tyrosine kinase activity. J Leukoc Biol 67:735–41.PubMedGoogle Scholar
  107. 107.
    Katsuyama, K., M. Shichiri, F. Marumo and Y. Hirata. 1998. Role of nuclear factor-κB activation in cytokine-and sphingomyelinase-stimulated inducible nitric oxide synthase gene expression in vascular smooth muscle cells. Endocrinology 139:4506–12.PubMedCrossRefGoogle Scholar
  108. 108.
    Dbaibo, G. S., L. M. Obeid and Y. A. Hannun. 1993. Tumor necrosis factor-alpha (TNF-alpha) signal transduction through ceramide. Dissociation of growth inhibitory effects of TNF-alpha from activation of nuclear factor-κ B. J Biol Chem 268:17762–6.PubMedGoogle Scholar
  109. 109.
    Mansat-de Mas, V., C. Bezombes, A. Quillet-Mary, A. Bettaieb, D. D’Orgeix A, G. Laurent and J. P. Jaffrezou. 1999. Implication of radical oxygen species in ceramide generation, c-Jun N-terminal kinase activation and apoptosis induced by daunorubicin. Mol Pharmacol 56:867–74.PubMedGoogle Scholar
  110. 110.
    Yoshimura, S., Y. Banno, S. Nakashima, K. Hayashi, H. Yamakawa, M. Sawada, N. Sakai and Y. Nozawa. 1999. Inhibition of neutral sphingomyelinase activation and ceramide formation by glutathione in hypoxic PC12 cell death. J Neurochem 73:675–83.PubMedCrossRefGoogle Scholar
  111. 111.
    Chatterjee, S., H. Han, S. Rollins and T. Cleveland. 1999. Molecular cloning, characterization, and expression of a novel human neutral sphingomyelinase. J Biol Chem 274:37407–12.PubMedCrossRefGoogle Scholar
  112. 112.
    Patel, M. 1998. Inhibition of neuronal apoptosis by a metalloporphyrin superoxide dismutase mimic. J Neurochem 71:1068–74.PubMedGoogle Scholar
  113. 113.
    Gouaze, V., M. E. Mirault, S. Carpentier, R. Salvayre, T. Levade and N. Andrieu-Abadie. 2001. Glutathione peroxidase-1 overexpression prevents ceramide production and partially inhibits apoptosis in doxorubicin-treated human breast carcinoma cells. Mol Pharmacol 60:488–96.PubMedGoogle Scholar
  114. 114.
    Janicke, R. U., M. L. Sprengart, M. R. Wati and A. G. Porter. 1998. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–60.PubMedGoogle Scholar
  115. 115.
    Jaffrezou, J. P., T. Levade, A. Bettaieb, N. Andrieu, C. Bezombes, N. Maestre, S. Vermeersch, A. Rousse and G. Laurent. 1996. Daunorubicin-induced apoptosis: triggering of ceramide generation through sphingomyelin hydrolysis. Embo. J. 15:2417–24.PubMedGoogle Scholar
  116. 116.
    Metkar, S. S., M. Anand, P. P. Manna, K. N. Naresh and J. J. Nadkarni. 2000. Ceramide-induced apoptosis in fas-resistant Hodgkin’s disease cell lines is caspase independent. Exp Cell Res 255:18–29.PubMedCrossRefGoogle Scholar
  117. 117.
    Tepper, A. D., E. de Vries, W. J. van Blitterswijk and J. Borst. 1999. Ordering of ceramide formation, caspase activation, and mitochondrial changes during CD95-and DNA damage-induced apoptosis [published erratum appears in J Clin Invest 1999 May; 103(9):1363]. J Clin Invest 103:971–8.PubMedGoogle Scholar
  118. 118.
    Reed, J. C. 1994. Bcl-2 and the regulation of programmed cell death. J Cell Biol 124:1–6.PubMedCrossRefGoogle Scholar
  119. 119.
    Kuida, K., T. S. Zheng, S. Na, C. Kuan, D. Yang, H. Karasuyama, P. Rakic and R. A. Flavell. 1996. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–72.PubMedCrossRefGoogle Scholar
  120. 120.
    Belaud-Rotureau, M. A., F. Lacombe, F. Durrieu, J. P. Vial, L. Lacoste, P. Bernard and F. Belloc. 1999. Ceramide-induced apoptosis occurs independently of caspases and is decreased by leupeptin. Cell Death Differ 6:788–95.PubMedCrossRefGoogle Scholar
  121. 121.
    Jaffrezou, J. P., N. Maestre, V. de Mas-Mansat, C. Bezombes, T. Levade and G. Laurent. 1998. Positive feedback control of neutral sphingomyelinase activity by ceramide. Faseb J 12:999–1006.PubMedGoogle Scholar
  122. 122.
    Sawada, M., S. Nakashima, Y. Banno, H. Yamakawa, K. Takenaka, J. Shinoda, Y. Nishimura, N. Sakai and Y. Nozawa. 2000. Influence of Bax or Bcl-2 overexpression on the ceramide-dependent apoptotic pathway in glioma cells. Oncogene 19:3508–20.PubMedCrossRefGoogle Scholar
  123. 123.
    Allouche, M., A. Bettaieb, C. Vindis, A. Rousse, C. Grignon and G. Laurent. 1997. Influence of Bcl-2 overexpression on the ceramide pathway in daunorubicin-induced apoptosis of leukemic cells. Oncogene 14:1837–45.PubMedCrossRefGoogle Scholar
  124. 124.
    El-Assaad, W., M. El-Sabban, C. Awaraji, N. Abboushi and G. S. Dbaibo. 1998. Distinct sites of action of Bcl-2 and Bcl-xL in the ceramide pathway of apoptosis. Biochem J 336:735–41.PubMedGoogle Scholar
  125. 125.
    Zhang, J., N. Alter, J. C. Reed, C. Borner, L. M. Obeid and Y. A. Hannun. 1996. Bcl-2 interrupts the ceramide-mediated pathway of cell death. Proc Natl Acad Sci U S A 93:5325–8.PubMedGoogle Scholar
  126. 126.
    Quillet-Mary, A., J. P. Jaffrezou, V. Mansat, C. Bordier, J. Naval and G. Laurent. 1997. Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem 272:21388–95.PubMedCrossRefGoogle Scholar
  127. 127.
    Ardail, D., I. Popa, K. Alcantara, A. Pons, J. P. Zanetta, P. Louisot, L. Thomas and J. Portoukalian. 2001. Occurrence of ceramides and neutral glycolipids with unusual long-chain base composition in purified rat liver mitochondria. FEBS Lett 488:160–4.PubMedCrossRefGoogle Scholar
  128. 128.
    Gudz, T. I., K. Y. Tserng and C. L. Hoppel. 1997. Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem 272:24154–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Ghafourifar, P., S. D. Klein, O. Schucht, U. Schenk, M. Pruschy, S. Rocha and C. Richter. 1999. Ceramide induces cytochrome c release from isolated mitochondria. Importance of mitochondrial redox state. J Biol Chem 274:6080–4.PubMedGoogle Scholar
  130. 130.
    Guidarelli, A., E. Clementi, C. De Nadai, R. Bersacchi and O. Cantoni. 2001. TNF alpha enhances the DNA single-strand breakage induced by the short-chain lipid hydroperoxide analogue tert-butylhydroperoxide via ceramide-dependent inhibition of complex III followed by enforced superoxide and hydrogen peroxide formation. Exp Cell Res 270:56–65.PubMedCrossRefGoogle Scholar
  131. 131.
    Richter, C. and P. Ghafourifar. 1999. Ceramide induces cytochrome c release from isolated mitochondria. Biochem Soc Symp 66:27–31.PubMedGoogle Scholar
  132. 132.
    Zhou, G. and B. Roizman. 2000. Wild-Type Herpes Simplex Virus 1 Blocks Programmed Cell Death and Release of Cytochrome c but Not the Translocation of Mitochondrial Apoptosis-Inducing Factor to the Nuclei of Human Embryonic Lung Fibroblasts. J. Virol. 74:9048–9053.PubMedGoogle Scholar
  133. 133.
    Shimeno, H., S. Soeda, M. Sakamoto, T. Kouchi, T. Kowakame and T. Kihara. 1998. Partial purification and characterization of sphingosine N-acyltransferase (ceramide synthase) from bovine liver mitochondrion-rich fraction. Lipids 33:601–5.PubMedGoogle Scholar
  134. 134.
    El Bawab, S., P. Roddy, T. Qian, A. Bielawska, J. J. Lemasters and Y. A. Hannun. 2000. Molecular cloning and characterization of a human mitochondrial ceramidase. J Biol Chem 275:21508–13.PubMedGoogle Scholar
  135. 135.
    Barak, A., L. S. Morse and T. Goldkorn. 2001. Ceramide: A potential mediator of apoptosis in human retinal pigment epithelial cells [In Process Citation]. Invest Ophthalmol Vis Sci 42:247–54.PubMedGoogle Scholar
  136. 136.
    Ariga, T., W. D. Jarvis and R. K. Yu. 1998. Role of sphingolipid-mediated cell death in neurodegenerative diseases. J Lipid Res 39:1–16.PubMedGoogle Scholar
  137. 137.
    Denisova, N. A., D. Fisher, M. Provost and J. A. Joseph. 1999. The role of glutathione, membrane sphingomyelin, and its metabolites in oxidative stress-induced calcium “dysregulation” in PC12 cells. Free Radic Biol Med 27:1292–301.PubMedCrossRefGoogle Scholar
  138. 138.
    Song, J. H., S. H. Shin, and G. M. Ross. 2001. Oxidative stress induced by ascorbate causes neuronal damage in an in vitro system. Brain Res 895:66–72.PubMedCrossRefGoogle Scholar
  139. 139.
    Levade, T., N. Auge, R. J. Veldman, O. Cuvillier, A. Negre-Salvayre and R. Salvayre. 2001. Sphingolipid mediators in cardiovascular cell biology and pathology. Circ Res 89:957–68.PubMedGoogle Scholar
  140. 140.
    Bhunia, A. K., H. Han, A. Snowden and S. Chatterjee. 1997. Redox-regulated signaling by lactosylceramide in the proliferation of human aortic smooth muscle cells. J Biol Chem 272:15642–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Harada-Shiba, M., M. Kinoshita, H. Kamido and K. Shimokado. 1998. Oxidized low density lipoprotein induces apoptosis in cultured human umbilical vein endothelial cells by common and unique mechanisms. J Biol Chem 273:9681–7.PubMedCrossRefGoogle Scholar
  142. 142.
    Bhunia, A. K., T. Arai, G. Bulkley and S. Chatterjee. 1998. Lactosylceramide mediates tumor necrosis factor-alpha-induced intercellular adhesion molecule-1 (ICAM-1) expression and the adhesion of neutrophil in human umbilical vein endothelial cells. J Biol Chem 273:34349–57.PubMedCrossRefGoogle Scholar
  143. 143.
    Omar, H. A., P. D. Cherry, M. P. Mortelliti, T. Burke-Wolin and M. S. Wolin. 1991. Inhibition of coronary artery superoxide dismutase attenuates endothelium-dependent and-independent nitrovasodilator relaxation. Circ Res 69:601–8.PubMedGoogle Scholar
  144. 144.
    MacKenzie, A. and W. Martin. 1998, Loss of endothelium-derived nitric oxide in rabbit aorta by oxidant stress: restoration by superoxide dismutase mimetics. Br J Pharmacol 124:719–28.PubMedCrossRefGoogle Scholar
  145. 144.
    Zhang, D. X., A. P. Zou and P. L. Li. 2001. Ceramide reduces endothelium-dependent vasodilation by increasing superoxide production in small bovine coronary arteries. Circ Res 88:824–31.PubMedGoogle Scholar
  146. 146.
    Pautz, A., R. Franzen, S. Dorsch, B. Boddinghaus, V. A. Briner, J. Pfeilschifter and A. Huwiler. 2002. Cross-talk between nitric oxide and superoxide determines ceramide formation and apoptosis in glomerular cells. Kidney Int 61:790–6.PubMedCrossRefGoogle Scholar
  147. 147.
    Charles, R., L. Sandirasegarane, J. Yun, N. Bourbon, R. Wilson, R. P. Rothstein, S. W. Levison and M. Kester. 2000. Ceramide-coated balloon catheters limit neointimal hyperplasia after stretch injury in carotid arteries. Circ Res 87:282–8.PubMedGoogle Scholar
  148. 148.
    Bourbon, N. A., J. Yun, D. Berkey, Y. Wang and M. Kester. 2001. Inhibitory actions of ceramide upon PKC-epsilon/ERK interactions. Am J Physiol Cell Physiol 280:C1403–11.PubMedGoogle Scholar
  149. 149.
    Shinomiya, K., M. Fukunaga, H. Kiyomoto, K. Mizushige, T. Tsuji, T. Noma, K. Ohmori, M. Kohno and S. Senda. 2002. A role of oxidative stress-generated eicosanoid in the progression of arteriosclerosis in type 2 diabetes mellitus model rats. Hypertens Res 25:91–8.PubMedCrossRefGoogle Scholar
  150. 150.
    Ceriello, A. 2000. Oxidative stress and glycemic regulation. Metabolism 49:27–9.PubMedGoogle Scholar
  151. 151.
    Penckofer, S., D. Schwertz and K. Florczak. 2002. Oxidative stress and cardiovascular disease in type 2 diabetes: the role of antioxidants and pro-oxidants. J Cardiovasc Nurs 16:68–85.PubMedGoogle Scholar
  152. 152.
    Facchini, F. S., N. W. Hua, G. M. Reaven and R. A. Stoohs. 2000. Hyperinsulinemia: the missing link among oxidative stress and age-related diseases? Free Radic Biol Med 29:1302–6.PubMedCrossRefGoogle Scholar
  153. 153.
    Midaoui, A. E. and J. de Champlain. 2002. Prevention of Hypertension, Insulin Resistance, and Oxidative Stress by alpha-Lipoic Acid. Hypertension 39:303–307.PubMedCrossRefGoogle Scholar
  154. 154.
    Hajduch, E., A. Balendran, I. H. Batty, G. J. Litherland, A. S. Blair, C. P. Downes and H. S. Hundal. 2001. Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia 44:173–83.PubMedCrossRefGoogle Scholar
  155. 155.
    Schmitz-Peiffer, C., D. L. Craig and T. J. Biden. 1999. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem 274:24202–10.PubMedCrossRefGoogle Scholar
  156. 156.
    Tirosh, A., R. Potashnik, N. Bashan and A. Rudich. 1999. Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. A putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation. J Biol Chem 274:10595–602.PubMedCrossRefGoogle Scholar
  157. 157.
    Rudich, A., A. Tirosh, R. Potashnik, R. Hemi, H. Kanety and N. Bashan. 1998. Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes 7:1562–9.Google Scholar
  158. 158.
    Turinsky, J., D. M. O’Sullivan and B. P. Bayly. 1990. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J Biol Chem 265:16880–5.PubMedGoogle Scholar
  159. 159.
    Greene, E. L., B. A. Nelson, K. A. Robinson and M. G. Buse. 2001. alpha-Lipoic acid prevents the development of glucose-induced insulin resistance in 3T3-L1 adipocytes and accelerates the decline in immunoreactive insulin during cell incubation. Metabolism 50:1063–9.PubMedCrossRefGoogle Scholar
  160. 160.
    Rudich, A., A. Tirosh, R. Potashnik, M. Khamaisi and N. Bashan. 1999. Lipoic acid protects against oxidative stress induced impairment in insulin stimulation of protein kinase B and glucose transport in 3T3-L1 adipocytes. Diabetologia 42:949–57.PubMedCrossRefGoogle Scholar
  161. 161.
    Long, S. D. and P. H. Pekala. 1996. Lipid mediators of insulin resistance: ceramide signalling down-regulates GLUT4 gene transcription in 3T3-L1 adipocytes. Biochem J 319:179–84.PubMedGoogle Scholar
  162. 162.
    Peraldi, P., G. S. Hotamisligil, W. A. Buurman, M. F. White and B. M. Spiegelman. 1996. Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J Biol Chem 271:13018–22.PubMedGoogle Scholar
  163. 163.
    Summers, S. A., L. A. Garza, H. Zhou and M. J. Birnbaum. 1998. Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol Cell Biol 18:5457–64.PubMedGoogle Scholar
  164. 164.
    Hotamisligil, G. S. 1999. Mechanisms of TNF-alpha-induced insulin resistance. Exp Clin Endocrinol Diabetes 107:119–25PubMedGoogle Scholar
  165. 165.
    Begum, N. and L. Ragolia. 1996. Effect of tumor necrosis factor-alpha on insulin action in cultured rat skeletal muscle cells. Endocrinology 137:2441–6.PubMedCrossRefGoogle Scholar
  166. 166.
    Reid, M. B. and Y. P. Li. 2001. Cytokines and oxidative signalling in skeletal muscle. Acta Physiol Scand 171:225–32.PubMedCrossRefGoogle Scholar
  167. 167.
    Jain, R. G., M. J. Meredith and P. H. Pekala. 1998. Tumor necrosis factor-alpha mediated activation of signal transduction cascades and transcription factors in 3T3-L1 adipocytes. Adv Enzyme Regul 38:333–47.PubMedGoogle Scholar
  168. 168.
    Gottesman, M. M. 1993. How cancer cells evade chemotherapy: sixteenth Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res 53:747–54.PubMedGoogle Scholar
  169. 169.
    Radin, N. S. 2001. Killing cancercells by poly-drug elevation of ceramide levels: a hypothesis whose time has come? Eur J Biochem 268:193–204.PubMedCrossRefGoogle Scholar
  170. 170.
    Ueda, T. and D. G. Plagens. 1987. 3-Phosphoglycerate-dependent protein phosphorylation. Proc Natl Acad Sci U S A 84:1229–33.PubMedGoogle Scholar
  171. 171.
    Deffie, A. M., J. K. Batra and G. J. Goldenberg. 1989. Direct correlation between DNA topoisomerase II activity and cytotoxicity in adriamycin-sensitive and-resistant P388 leukemia cell lines. Cancer Res 49:58–62.PubMedGoogle Scholar
  172. 172.
    Morrow, C. S. and K. H. Cowan. 1990. Glutathione S-transferases and drug resistance. Cancer Cells 2:15–22.PubMedGoogle Scholar
  173. 173.
    Senchenkov, A., D. A. Litvak and M. C. Cabot. 2001. Targeting ceramide metabolism-a strategy for overcoming drug resistance. J Natl Cancer Inst 93:347–57.PubMedCrossRefGoogle Scholar
  174. 174.
    Liu, Y. Y., T. Y. Han, A. E. Giuliano and M. C. Cabot. 2001. Ceramide glycosylation potentiates cellular multidrug resistance. Faseb J 15:719–30.PubMedCrossRefGoogle Scholar
  175. 175.
    Lavie, Y., H. Cao, S. L. Bursten, A. E. Giuliano and M. C. Cabot. 1996. Accumulation of glucosylceramides in multidrug-resistant cancer cells. J Biol Chem 271:19530–6.PubMedGoogle Scholar
  176. 176.
    Lucci, A., W. I. Cho, T. Y. Han, A. E. Giuliano, D. L. Morton and M. C. Cabot. 1998. Glucosylceramide: a marker for multiple-drug resistant cancers. Anticancer Res 18:475–80.PubMedGoogle Scholar
  177. 177.
    Ogretmen, B. and Y. A. Hannun. 2001. Updates on functions of ceramide in chemotherapy-induced cell death and in multidrug resistance. Drug Resist Updat 4:368–77.PubMedGoogle Scholar
  178. 178.
    Cabot, M. C., A. E. Giuliano, A. Volner and T. Y. Han. 1996. Tamoxifen retards glycosphingolipid metabolism in human cancer cells. FEBS Lett 394:129–31.PubMedCrossRefGoogle Scholar
  179. 179.
    Maurer, B. J., L. S. Metelitsa, R. C. Seeger, M. C. Cabot and C. P. Reynolds. 1999. Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)-retinamide in neuroblastoma cell lines. J Natl Cancer Inst 91:1138–46.PubMedCrossRefGoogle Scholar
  180. 180.
    O’Donnell, P. H., W. X. Guo, C. P. Reynolds and B. J. Maurer. 2002. N-(4-hydroxyphenyl)retinamide increases ceramide and is cytotoxic to acute lymphoblastic leukemia cell lines, but not to non-malignant lymphocytes. Leukemia 16:902–10.PubMedGoogle Scholar
  181. 181.
    Mehta, S., D. Blackinton, I. Omar, N. Kouttab, D. Myrick, J. Klostergaard and H. Wanebo. 2000. Combined cytotoxic action of paclitaxel and ceramide against the human Tu138 head and neck squamous carcinoma cell line. Cancer Chemother Pharmacol 46:85–92.PubMedCrossRefGoogle Scholar
  182. 182.
    Muller, I., D. Niethammer and G. Bruchelt. 1998. Anthracycline-derived chemotherapeutics in apoptosis and free radical cytotoxicity (Review). Int J Mol Med 1:491–4.PubMedGoogle Scholar
  183. 183.
    Takeda, Y., M. Tashima, A. Takahashi, T. Uchiyama and T. Okazaki. 1999. Ceramide generation in nitric oxide-induced apoptosis. Activation of magnesium-dependent neutral sphingomyelinase via caspase-3. J Biol Chem 274:10654–60.PubMedCrossRefGoogle Scholar
  184. 184.
    Hofmann, K., S. Tomiuk, G. Wolff and W. Stoffel. 2000. Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc Natl Acad Sci U S A 97:5895–900.PubMedGoogle Scholar
  185. 185.
    Sawai, H., N. Domae, N. Nagan and Y. A. Hannun. 1999. Function of the cloned putative neutral sphingomyelinase as lyso-platelet activating factor-phospholipase C. J Biol Chem 274:38131–9.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Tzipora Goldkorn
  • Tommer Ravid
  • Edward A Medina

There are no affiliations available

Personalised recommendations