The Application of Speckle Metrology to Heart Mechanics

  • G. R. Gaudette
  • E. U. Azeloglu
  • J. Todaro
  • L. Keene
  • I. B. Krukenkamp
  • F. P. Chiang


Commonly used techniques for analysis of regional heart function include sonomicrometry, implanted markers, and surface markers. However, these techniques cannot offer the high spatial resolution needed to define regional abnormalities in the heart. We have recently applied a computer aided speckle interferometry technique (CASI) with high spatial resolution to measuring the deformation of heart muscle. We applied silicon carbide particles to the surface of the isolated heart and loaded the heart by increasing the intracavitary pressure. The movement of the speckle pattern was tracked with a CCD camera. This technique produces equivalent results to that of the gold standard in heart mechanics, sonomicrometry, but with three orders of mapitude higher spatial resolution. We have used this technique to determine changes in myocardial deformation of perfused, ischemic and reperfused rabbit hearts.


Speckle Pattern Charge Couple Device Camera Myocardial Deformation Strain Rate Imaging Strain Measurement Technique 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fung YC. Biomechanics, Mechanical Properties of Living Tissues. 1981, New York: Springer-Verlag.Google Scholar
  2. 2.
    Spotnitz HM. Macro design, structure, and mechanics of the left ventricle. Journal of Thoracic & Cardiovascular Surgery, 2000. 119(5): p. 1053–77.CrossRefGoogle Scholar
  3. 3.
    Guccione JM, O’Dell WG, McCulloch AD, Hunter WC. Anterior and posterior left ventricular sarcomere lengths behave similarly during ejection. American Journal of Physiology, 1997. 272(1 Pt 2): p. H469–77.Google Scholar
  4. 4.
    van Leuven SL, Waldman LK, McCulloch AD, Covell JW. Gradients of epicardial strain across the perfusion boundry during acute myocardial ischemia. American Journal of Physiology, 1994. 267: p. H2348–2362.Google Scholar
  5. 5.
    Prinzen FW, Arts T, Hoeks APG, Reneman RS. Discrepancies between myocardial blood flow and fiber shortening in the ischemic border zone as assessed with video mapping of epicardial deformation. Phlugers. Arc (Europ. J. Physiol.), 1989. 415: p. 220–29.CrossRefGoogle Scholar
  6. 6.
    Gallagher KP, Gerren RA, Stirling MC, Choy M, Dysko RC, McManimon SP, Dunham WR. The distribution of functional impariment across the lateral border of acutely ischemic myocardium. Circulation Research, 1986. 58: p. 570–583.Google Scholar
  7. 7.
    Prinzen FW, Hunter WC, Wyman BT, McVeigh ER. Mapping of regional myocardial strain and work during ventricular pacing: Experimental study using magnetic resonance imaging tagging. Journal of the American College of Cardiology, 1999. 33: p. 1735–1742.CrossRefGoogle Scholar
  8. 8.
    Chatterjee S, Stewart AS, Bish LT, Sweeney HL, Garder TJ. Gene transfer of HGF is superior to VEGF in inducing coronary angiogenesis and preservation of myocardial contractility. Surgical Forum, 2001. 52: p. 67–69.Google Scholar
  9. 9.
    Augustijn CH AT, Prinzen FW, Reneman S. Mapping the sequence of contraction of the canine left ventricle. Pflugers Arch, 1991. 419: p. 529–533.CrossRefGoogle Scholar
  10. 10.
    Karlon WJ, McCulloch AD, Covell JW, Hunter JJ, Omens JH. Regional dysfunction correlates with myofiber disarray in transgenic mice with ventricular expression of ras. American Journal of Physiology — Heart & Circulatory Physiology, 2000. 278(3): p. H898–906.Google Scholar
  11. 11.
    Derumeaux G, Ovize M, Loufoua J, Andre-Fouet X, Minaire Y, Cribier A, Letac B. Doppler tissue imaging quantitates regional wall motion during myocardial ischemia and reperfusion. Circulation, 1998. 97(19): p. 1970–7.Google Scholar
  12. 12.
    Heimdal A, Stoylen A, Torp H, Skjaerpe T. Real-time strain rate imaging of the left ventricle by ultrasound. Journal of the American Society of Echocardiography, 1998. 11(11): p. 1013–9.CrossRefGoogle Scholar
  13. 13.
    Castro PL, Greenberg NL, Drinko J, Garcia MJ, Thomas JD. Potential pitfalls of strain rate imaging: angle dependency. Biomedical Sciences Instrumentation, 2000. 36: p. 197–202.Google Scholar
  14. 14.
    Moulton MJ, Creswell LL, Downing SW, Actis RL, Szabo BA, Vannier MW, Pasque MK. Spline surface interpolation for calculating 3-D ventricular strains from MRI tissue tagging. American Journal of Physiology, 1996. 270: p. H281–H297.Google Scholar
  15. 15.
    Scott CH, Sutton MS, Gusani N, et al. Effect of dobutamine on regional left ventricular function measured by lagged magnetic resonance imaging in normal subjects. American Journal of Cardiology, 1999. 83(3): p. 412–7.CrossRefGoogle Scholar
  16. 16.
    Chen DJ, Chiang FP. Optimal sampling resolution and range of measurement in digital speckle correlation 2: white speckle method. Proc SEM Annual Spring Conf on Exp Mech, 1989.Google Scholar
  17. 17.
    Chiang FP, Wang Q, Lehman F. New development’s in full field strain measurements using speckles., in Nontraditional Methods of Sensing Stress, Strains, and Damage in Materials and Structures., C.F. Lucas and D.A. Stubbs, Editors. 1997, ASTM. p. 156–169.Google Scholar
  18. 18.
    Erf RK. Speckle Metrology. 1978: Academic Press.Google Scholar
  19. 19.
    Chiang FP. Speckle Metrology, in Metals Handbook. 1989, SSM-International. p. 432–437.Google Scholar
  20. 20.
    Chen DJ, Chiang FP, Tan YS, Don HS. Digital speckle-displacement measurements using a complex spectrum method. Applied Optics, 1993. 32(11): p. 1839–49.Google Scholar
  21. 21.
    Chiang FP. A family of 2D and 3D experimental stress analysis technique using laser speckles. Solid Mechanics Archives, 1978. 30: p. 1–32.ADSGoogle Scholar
  22. 22.
    Asundi A, Chiang FP. Theory and Application of White Light Speckle Methods. Optical Engineering, 1982.24(4): p. 570–580.Google Scholar
  23. 23.
    Chen DJ, Chiang FP. Computer aided speckle interferometry using spectral amplitude fringes. Applied Optics, 1993. 32: p. 225–36.ADSCrossRefGoogle Scholar
  24. 24.
    Chen DJ, Chiang FP. Range of measurement of computer aided speckle interferometery (CASI). Proc 2nd Int Conf on Photomechanics and Speckle Metrology, 1991. 1554A.Google Scholar
  25. 25.
    Peters WH, Ranson WF. Digital imaging techniques in experimental stress analysis. Optical Engineering, 1982. 21: p. 427–31.Google Scholar
  26. 26.
    Lu H, Vendroux G, Knauss WG. Surface deformation measurements of a cylindrical specimen by digital image correlation. Experimental Mechanics, 1997. 37: p. 433–39.CrossRefGoogle Scholar
  27. 27.
    Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA. Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation, 2000. 102(10): p. 1158–64.Google Scholar
  28. 28.
    Omens JH, Farr DD, McCulloch AD, Waldman LK. Comparison of two techniques for measuring two-dimensional strain in rat left ventricles. Am. J. Physiol, 1996. 271: p. H1256–61.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • G. R. Gaudette
    • 1
  • E. U. Azeloglu
    • 1
  • J. Todaro
    • 1
  • L. Keene
    • 1
  • I. B. Krukenkamp
    • 1
  • F. P. Chiang
    • 1
  1. 1.Division of Cardiothoracic Surgery Department of Mechanical EngineeringState University of New York at Stony BrookStony Brook

Personalised recommendations