Symbiosis pp 451-464 | Cite as

Anaerobic Ciliates and Their Metahanogenic Endosymbionts

  • J. H. P. Hackstein
  • A. H. A. M. Van Hoek
  • J. A. M. Leunissen
  • M. Huynen
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 4)


The endosymbiotic association between ciliates and methanogenic Archaea represents only one of the many symbiotic associations of ciliates. However, this association is an especially well-studied symbiosis, that, besides its bearing for an understanding of the evolution of the eukaryotic cell (Martin and Müller 1998), has a global impact because the consortia between the hydrogen-producing ciliates and their methanogenic endosymbionts contribute to the greenhouse effect. It is not the aim of this review to discuss the environmental consequences of biological methane production. Here we have reviewed the literature dealing predominantly with the molecular, cell-biological and evolutionary aspects of the symbiosis between anaerobic ciliates and methanogenic archaea. We have shown that the symbiosis between ciliates and methanogens has its origin in the evolution of hydrogenosomes — organelles that share a common origin with the mitochondria. Hydrogenosomes provide the nutritional basis for the symbiosis: they generate hydrogen and carbon dioxide, the presumed substrates for the endosymbiotic methanogens. By there moval of both compounds, the endosymbionts improve the function of the hydrogenosomes, and consequently, the performance and “fitness” of the ciliates. Therefore, the symbiotic association between ciliates and their methanogenic endosymbionts seems to provide the “cleanest” example of a mutualistic symbiosis. However, we have to admit that we are far from understanding all the facets of just this one symbiotic association. Are hydrogen and carbon dioxide really the only substances that the endosymbionts take from their hosts? How can we be sure that the ciliates do not digest one or the other of their endosymbionts? How do the ciliates and their endosymbionts communicate? How do they synchronize their cell divisions? Which mechanisms help the endosymbionts to cope with “Muller’s ratchet”? What is the role of the host and endosymbionts, respectively, to survive an accidental exposure to oxygen? There are many questions and no answers yet. Thus, we have to commit that we are still very ignorant about many of the facets of the phenomenon “symbiosis”.


Symbiotic Association Methanogenic Archaea Mutualistic Symbiosis Paramecium Bursaria Endosymbiotic Association 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, J. and Hasegawa, M. (1996). MOLPHY Version 2.3. Programs for molecular phylogenetics based on maximum likelihood. Computer Science Monographs, no. 28. Institute of Statistical Mathematics, Tokyo, Japan.Google Scholar
  2. Adams, M. W. W. (1990). Biochim. Biophys. Acta 1020, 115–145.PubMedGoogle Scholar
  3. Amann, R.I., Ludwig, W. and Schleifer, K.H. (1995). Microbiol. Rev. 59, 143–169PubMedGoogle Scholar
  4. Akhmanova, A., Voncken, F., van Alen, T., van Hoek, A., Boxma, B., Vogels, G., Veenhuis, M. and Hackstein, J. H. P. (1998) Nature 396, 527–528CrossRefPubMedGoogle Scholar
  5. Bijnen, F.G.C., Harren, F.J.M., Hackstein, J.H.P., and Reuss, J. (1996). ApplOptics 35, 5357–5368Google Scholar
  6. Broers, C.A.M., Stumm, C.K., Vogels, G.D. and Brugerolle, G. (1990). Eur. J. Protistol 25, 369–380Google Scholar
  7. Brune, A. and Friedrich, M. (2000) Curr. Opin. Microbiol. 3, 263–269CrossRefPubMedGoogle Scholar
  8. Coombs, G.H. and Hackstein, J.H.P. (1995) In: G. Brugerolle and J.-P. Mignot (eds.) Protistological actualities. Proceedings of the Second European Congress of Protistology, Clermont-Ferrand, France., pp. 90–101Google Scholar
  9. Corliss, J.O. (1979). Theciliated protozoa. Pergamon Press, Oxford.Google Scholar
  10. De Bary, A. (1879). Die Erscheinung der Symbiose. Verlag K. J. Trubner, Strassburg.Google Scholar
  11. Distel, D.L. (1998) Bioscience 48, 277–286Google Scholar
  12. Douglas, A.E. (1994) Symbiotic interactions. Oxford University Press, pp. 148Google Scholar
  13. Doddema, H.J. and Vogels, G.D. (1978) Appl. Environ. Microbiol, 36, 752–754PubMedGoogle Scholar
  14. Doolittle, W. F. (1998). Trends Genet 14, 307–311PubMedGoogle Scholar
  15. Dyal, P.L., Hope, S., Roberts, D. M., and Embley, T.M. (1995) Molec. Ecol 4, 499–503Google Scholar
  16. Embley, T.M., Finlay, B.J., Thomas, R.H. and Dyal, P.L. (1992a) J. Gen. Microbiol. 138, 1479–1487PubMedGoogle Scholar
  17. Embley, T.M., Finlay, B.J. and Brown, S. (1992b). FEMS Microb. Lett 97, 57–61CrossRefGoogle Scholar
  18. Embley, T.M. and Finlay, B.J. (1994). Microbiology-UK 140, 225–235Google Scholar
  19. Embley, T.M., Finlay, B.J., Dyal, P.L., Hirt, R.P., Wilkinson, M. and Williams, A.G. (1995). Proc. R. Soc Lond. 262, 87–93.Google Scholar
  20. Embley, T.M., Horner, D.A. and Hirt, R.P. (1997). Trends Ecol. Evol. 12, 437–441CrossRefGoogle Scholar
  21. Fenchel, T. and Finlay, B.J. (1989). Ophelia 30, 75–93Google Scholar
  22. Fenchel, T. and Finlay, B.J. (1991). Eur. J Protistol. 26, 201–215Google Scholar
  23. Fenchel, T and Finlay, B.J. (1992) Arch. Microbiol 157, 475–480Google Scholar
  24. Fenchel, T. and Bernard, C. (1993) Nature 362, 300CrossRefGoogle Scholar
  25. Fenchel, T., and Finlay, B.J. (1995). Ecology and evolution in anoxic worlds. Oxford Universtiy Press. pp. 276Google Scholar
  26. Ferry, J.G. (ed) (1993). Methanogenesis. Chapman and Hall, N.Y., London.Google Scholar
  27. Ferry, J. G. (1999). FEMS Microbiol. Rev. 23, 13–38PubMedGoogle Scholar
  28. Finlay, B.L. (1985). Freshwater Biol. 15, 333–346Google Scholar
  29. Finlay, B.L., Span, A.S.W. and Harman, J.M.P. (1983). Nature 303, 333–336CrossRefGoogle Scholar
  30. Finlay, B.J. and Fenchel, T. (1989) FEMS Microbiol Lett. 65, 311–314CrossRefGoogle Scholar
  31. Finlay, B.J., Maberly, S.C. and Esteban, G.F. (1996). FEMS Microbiol. Ecol. 20, 229–235Google Scholar
  32. Gijzen, H.J., Broers, C.A.M., Barughare, M. and Stumm, C.K. (1991). Appl. Environ. Microbiol. 57, 1630–1634PubMedGoogle Scholar
  33. Goosen, N.K., Horemans, A.M.C., Hillebrand, S.J.W., Stumm, C. K. and Vogels, G.D. (1988). Arch. Microbiol. 150, 165–170.CrossRefGoogle Scholar
  34. Goosen, N.K., van der Drift, C., Stumm, C.K. and Vogels, G.D. (1990a). FEMS Microbiol. Lett. 69, 171–175.CrossRefGoogle Scholar
  35. Goosen, N.K., Wagener, S. and Stumm, C.K. (1990b). Arch. Microbiol. 153, 187–192CrossRefGoogle Scholar
  36. Gustafson, D.E., Stoecker, D.K., Johnson, M..D., van Heukelem, W.F. and Sneider, K. (2000). Nature 405, 1049–1052CrossRefPubMedGoogle Scholar
  37. Hackstein, J.H.P. and Stumm, C.K. (1994). Proc. Natl. Acad. Sci. USA 91, 5441–5445PubMedGoogle Scholar
  38. Hackstein, J. H.P. and van Alen, T.A. (1996). Evolution 50, 559–572Google Scholar
  39. Hackstein, J.H.P. (1997). Antonie van Leeuwenhoek 72, 63–76.CrossRefPubMedGoogle Scholar
  40. Hackstein et al. (1999). Trends Microbiol. 7, 441–447CrossRefPubMedGoogle Scholar
  41. Hirt, R. P., Wilkinson, A. G. and Embley, T. M. 1998. In: G. H. Coombs, K. Vickerman., M. A. Sleigh,. and A. Warren, (eds.) Evolutionary Relationships among protozoa. Chapman and Hall, London, pp. 327–340Google Scholar
  42. Krueger, D.M. and Cavanaugh, C.M. (1997). Appl. Environ. Microb. 63, 91–98Google Scholar
  43. Kusch, J., Stremmel, M., Breiner, H.W., Adams, V., Schweikert, M. and Schmidt, H.J. (2000). Microb. Ecol. 40, 330–335PubMedGoogle Scholar
  44. Lloyd, D., Hillman, K., Yarlett, N. and Williams, A.G (1989). J. Protozool. 36, 205–213PubMedGoogle Scholar
  45. Martin, W. and Müller, M. (1998). Nature 392, 37–41CrossRefPubMedGoogle Scholar
  46. Moran, N. A. and Baumann, P. (2000). Curr. Opin. Microbiol. 3, 270–275CrossRefPubMedGoogle Scholar
  47. Müller, M. (1993). J Gen. Microbiol. 139, 2879–2889PubMedGoogle Scholar
  48. Nishihara, N., Horiike, S., Takahashi, T., Kosaka, T., Shigenaka, Y. and Hosoya, H. (1998). Protoplasma 203, 91–99CrossRefGoogle Scholar
  49. Petroni, G., Spring, S., Schleifer, K. H., Verni, F. and Rosati, G. (2000). ProcNatl. Acad. Sci. USA 97, 1813–1817Google Scholar
  50. Roger, A.J. (1999). Am. Nat. 154 Suppl., S146–S163Google Scholar
  51. Rotte C, Henze K., Müller M. and Martin W. (2000) Curr. Opin Microbiology 3, 481–486.Google Scholar
  52. Schlegel, M. (1991). Eur. J. Protistol. 27, 207–219Google Scholar
  53. Schüssler, A. and Schnepf, E. (1992). Protoplasma 166, 218–222Google Scholar
  54. Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. and Ishikawa, H. (2000). Nature 407, 81–86PubMedGoogle Scholar
  55. Spring, S., Schulze, R., Overmann, J. and Schleifer, K. H. (2000). FEMS Microbiol. Rev. 24, 573–590PubMedGoogle Scholar
  56. Springer, N., Amann, R., Ludwig, W., Schleifer, K. H. and Schmidt, H. (1996). FEMS Microbiol. Lett. 135, 333–336PubMedGoogle Scholar
  57. Stoecker, D. K., Michaels, A. E. and Davis, L.H. (1987). Nature 326, 790–792CrossRefGoogle Scholar
  58. Tielens, A.G.M. and van Hellemond, J.J. (1998). Biochim. Biophys. Acta 1365, 71–78PubMedGoogle Scholar
  59. van Bruggen, J.J.A., Stumm, C.K. and Vogels, G.D. (1983). Arch. Microbiol. 136, 89–95CrossRefGoogle Scholar
  60. van Bruggen, J.J.A., Zwart, K.B., Assema, R.M., Stumm, C.K., and Vogels, G.D. (1984). Arch. Microbiol. 139, 1–7CrossRefGoogle Scholar
  61. van Bruggen, J.J.A., Zwart, K.B., Herman, J.G.F., van Hove, E.M., Assema, R.M., Stumm, C.K., and Vogels, G.D. (1986). Arch. Microbiol. 144, 367–374CrossRefGoogle Scholar
  62. van Hoek, A.H.A.M., van Alen, T.A., Sprakel, V.S.I., Hackstein, J.H.P. and Vogels, G D (1998). Mol. Biol. Evol. 15, 1195–1206.PubMedGoogle Scholar
  63. van Hoek, A.H.A.M., Sprakel, V.S.I., van Alen, T.A., Theuvenet, A.P.R., Vogels, G.D. and Hackstein., J.H P. (1999). J. Euk. Microbiol. 46, 427–433.PubMedGoogle Scholar
  64. van Hoek, A.H.A.M., Akhmanova, A.S., Huynen, M.A. and Hackstein, J.H.P. (2000a) Mol. Biol. Evol. 17, 202–206.PubMedGoogle Scholar
  65. van Hoek, A.H.A.M., Sprakel, V.S.I., Akhmanova, A., van Alen, T.A., Brigge, T, Vogels, G.D and Hackstein, J.H.P. (2000b). Mol. Biol. Evol. 17, 251–258PubMedGoogle Scholar
  66. van Hoek, A.H.A.M., Akhmanova, A., van Alen, T.A, Huynen, M., Leunissen, J.A.M., van der Staay, G. and Hackstein, J.H.P. (2001) submittedGoogle Scholar
  67. Vogels, G.D., Hoppe, W.F., and Stumm, C.K. (1980). Appl. Environ. Microbiol. 40, 608–612PubMedGoogle Scholar
  68. Whitman. W.B., Coleman, D.C. and Wiebe, W.J. (1998). Proc. Natl. Acad. Sci. USA 95, 6578–6583CrossRefPubMedGoogle Scholar
  69. Yarlett, N., Lloyd, D., and Williams, A.G. (1985). Biochem. J. 228, 187–192PubMedGoogle Scholar
  70. Zwart, K.B., Goosen, N.K., van Schijndel, M.W., Broers, C.A.M., Stumm, C.K and Vogels, G.D. (1988). J. Gen. Microbiol. 134, 2165–2170Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • J. H. P. Hackstein
    • 1
  • A. H. A. M. Van Hoek
    • 1
  • J. A. M. Leunissen
    • 2
  • M. Huynen
    • 3
  1. 1.Department of Evolutionary MicrobiologyUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Centre for Molecular and Biomolecular InformaticsUniversity of NijmegenNijmegenThe Netherlands
  3. 3.EMBL BiocomputingHeidelbergGermany

Personalised recommendations