Advertisement

Mathematical Physics and Formalized Epistermology: Debate with Jean Petitot

  • Jean Petitot
Part of the Fundamental Theories of Physics book series (FTPH, volume 129)

Abstract

This paper develops an updated transcendentalist perspective concerning the epistemological status of objectivity. The main point is that objectivity is neither an ontology nor a mere description of a phenomenal state of affairs. It is instead a principled (categorial) “legalization” and a mathematical reconstruction of the phenomena. As the very concept of a phenomenon is relational (relative to a receptive stance such as perception in classical mechanics or measure devices in quantum mechanics), the conditions for accessing them must be included in the very concept of objectivity. This paper emphasizes the transcendental content of symmetries in modern physical theories, from general relativity to gauge invariance. A great deal of the discussion focuses on epistemological key points in quantum mechanics.

Key words

physical objectivity transcendental philosophy mathematical models symmetries quantum mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Abraham and J. Marsden, 1978, Foundations of Mechanics (Benjamin Cummings, New-York).zbMATHGoogle Scholar
  2. 2.
    H. E. Allison, 1983, Kant’s Transcendental Idealism. An Interpretation and Defense (Yale University Press, New-Haven).Google Scholar
  3. 3.
    V. Arnold, 1976, Méthodes mathématiques de la mécanique classique (Mir, Moscow).zbMATHGoogle Scholar
  4. 4.
    D. Bailin and A. Love, 1994, Supersymmetric Gauge Field Theory and String Theory (Institute of Physics, London).zbMATHGoogle Scholar
  5. 5.
    D. Bennequin, 1994. “Questions de physique galoisienne,” in Passion des Formes, à René Thom, M. Porte, ed. (E.N.S. Editions, Fontenay-Saint Cloud), pp. 311–410.Google Scholar
  6. 6.
    M. Bitbol, 1996, Mécanique quantique: Une introduction philosophique (Paris, Flammarion).Google Scholar
  7. 7.
    N. Bohr, 1935, Phys. Rev. 48, 696.CrossRefADSzbMATHGoogle Scholar
  8. 8.
    G. Brittan, 1978, Kant’s Theory of Science (University Press, Princeton).Google Scholar
  9. 9.
    E. Cassirer, 1918, Kants Leben und Lehre; translation by J. Haden, 1981, Kant’s Life and Thought (Yale University Press, New Haven).Google Scholar
  10. 10.
    G. Cohen-Tannoudji and M. Spiro, 1986, La Matière-Espace-Temps (Fayard, Paris).Google Scholar
  11. 11.
    H. Duncan, 1984, “Inertia, the communication of motion, and Kant’s third law of mechanics,” Phil. Sci. 51, 93–119.CrossRefMathSciNetGoogle Scholar
  12. 12.
    B. ďEspagnat, 1985, Une incertaine réalité (Gauthier-Villars, Paris).Google Scholar
  13. 13.
    B. ďEspagnat, 1994, Le réel voilé (Fayard, Paris).Google Scholar
  14. 14.
    H. J. Folse, 1978, “Kantian aspects of complementarity,” Kant-Studien 69, 58–66.CrossRefGoogle Scholar
  15. 15.
    R. J. Gomez, 1986, “Beltrami’s Kantian view of non-Euclidean geometry,” Kant-Studien 77 (1), 102–107.CrossRefGoogle Scholar
  16. 16.
    J. Honner, 1982, “The transcendental philosophy of Niels Bohr,” Stud. Hist. Phil. Sci. 13, 1, 1–29.MathSciNetCrossRefGoogle Scholar
  17. 17.
    C. Itzykson and J. B. Zuber, 1985, Quantum Field Theory (McGraw-Hill, New York).Google Scholar
  18. 18.
    M. Jammer, 1974, The Philosophy of Quantum Mechanics (Wiley, New York).Google Scholar
  19. 19.
    M. Kaku, 1988, Introduction to Superstrings (Springer, New York).zbMATHGoogle Scholar
  20. 20.
    I. Kant, 1781–1787, Kritik der reinen Vernunft (Kants gesammelte Schriften, Band III, Preussische Akademie der Wissenschaften (Georg Reimer, Berlin, 1911).Google Scholar
  21. 21.
    I. Kant, 1786, Metaphysische Anfangsgründe der Naturwissenschaft (Kants gesammelte Schriften, Band IV, Preussische Akademie der Wissenschaften (Georg Reimer, Berlin, 1911); translation by J. Gibelin, 1971, Premiers Pincipes métaphysiques de la Science de la Nature (Vrin, Paris).Google Scholar
  22. 22.
    I. Kant, 1796–1803, Opus Postumum, translation by F. Marty (Presses Universitaires de France, Paris, 1986).Google Scholar
  23. 23.
    Y. Manin, 1988, Gauge Field Theory and Complex Geometry (Springer, New York).zbMATHGoogle Scholar
  24. 24.
    J. Marsden, 1974, Applications of Global Analysis in Mathematical Physics (Publishor Perish, Berkeley).zbMATHGoogle Scholar
  25. 25.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler, 1973, Gravitation (Freeman, San Francisco).Google Scholar
  26. 26.
    R. Omnès, 1994, Philosophie de la science contemporaine (Gallimard, Paris).Google Scholar
  27. 27.
    J. Petitot, 1991, La Philosophie transcendantale et le problème de ľObjectivité (Entretiens du Centre Sèvres), F. Marty, ed. (Osiris, Paris).Google Scholar
  28. 28.
    J. Petitot, 1992a, Physique du Sens (Editions du CNRS, Paris).Google Scholar
  29. 29.
    J. Petitot, 1992b, “Actuality of transcendental aesthetics for modern physics,” 1830–1930, in A Century of Geometry, L. Boi, D. Flament, and J.-M. Salanskis, eds. (Springer, New-York).Google Scholar
  30. 30.
    J. Petitot, 1994b, “Esthétique transcendantale et physique mathématique,” Neukantianismus: Perspektiven und Probleme, E. W. Orth and H. Holzhey, eds. (Königshausen & Neumann, Würzburg), pp. 187–213.Google Scholar
  31. 31.
    A. Philonenko, 1972, Ľoeuvre de Kant (Vrin, Paris).Google Scholar
  32. 32.
    C. Quigg, 1983, Gauge Theories of the Strong, Weak, and Electromagnetic Interactions (Benjamin-Cummings, Reading, MA).Google Scholar
  33. 33.
    J. M. Souriau, 1975, Géométrie symplectique et physique mathématique (Collection Internationale du CNRS 237, Paris).Google Scholar
  34. 34.
    B. C. Van Fraassen, 1991, Quantum Mechanics: An Empirist View (Clarendon, Oxford).CrossRefGoogle Scholar
  35. 35.
    J. Vuillemin, 1955, Physique et Métaphysique kantiennes (Presses Universitaires de France, Paris).Google Scholar
  36. 36.
    A. Weinstein, 1977, Lectures on Symplectic Manifolds (Conference Series, American Mathematical Society 29, Providence, RI).Google Scholar
  37. 37.
    C. F. von Weizaäcker, 1979, Die Einheit der Natur (Hauser, Munich).Google Scholar
  38. 38.
    H. Weyl, 1922, Space-Time-Matter (Dover, New-York).zbMATHGoogle Scholar
  39. 39.
    J. E. Wiredu, 1970, “Kant’s synthetic a priori in geometry and the rise of non-euclidean geometries,” Kant-Studien 61 (1) 5–27.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jean Petitot
    • 1
  1. 1.Ecole PolytechniqueParisFrance

Personalised recommendations