Advertisement

Photosynthesis pp 159-178 | Cite as

The Green Bacteria. II. The Reaction Center Photochemistry and Electron Transport

Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 10)

Keywords

Reaction Center Absorbance Change Purple Bacterium Green Sulfur Bacterium Primary Electron Donor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

For Further Reading

  1. R1.
    U Feiler and G Hauska (1995) The reaction center from green sulfur bacteria. In: RE Blankenship, MT Madigan and CE Bauer (eds) Anoxygenic Photosynthetic Bacteria, pp 665–685. KluwerGoogle Scholar
  2. R2.
    H Sakurai, N Kusumoto and K Inoue (1996) Function of the reaction center of green sulfur bacteria. Photochem Photobiol 64: 5–13Google Scholar
  3. R3.
    R Feick, JA Shiozawa and A Ertlmaier (1995) Biochemical and spectroscopic properties of the reaction center of the green filamentous bacterium, Chloroflexus aurantiacus. In: RE Blankenship, MT Madigan and CE Bauer (eds) Anoxygenic Photosynthetic Bacteria, pp 699–708. KluwerGoogle Scholar
  4. R4.
    J Amesz (1995) The antenna-reaction center complex of heliobacteria. In: RE Blankenship, MT Madigan and CE Bauer (eds) Anoxygenic Photosynthetic Bacteria, pp 687–697. KluwerGoogle Scholar
  5. R5.
    J Amesz (1995) The heliobacteria, a new group of photosynthetic bacteria. J Photochem Photobiol B: Biology 30: 89–96CrossRefGoogle Scholar
  6. R6.
    H Gest (1994) Discovery of the heliobacteria. Photosynthesis Res 41: 17–21Google Scholar

Refereces

  1. 1.
    CF Fowler, NA Nugent and RC Fuller (1971) The isolation and characterization of a photochemically active complex from Chloropseudomonas ethylica. Proc Nat Acad Sci, USA 68: 2278–2282Google Scholar
  2. 2.
    JM Olson, TH Giddings and EJ Shaw (1976) An enriched reaction center preparation from green photosynthetic bacteria. Biochim Biophys Acta 449: 197–208PubMedGoogle Scholar
  3. 3.
    T Swarthoff and J Amesz (1979) Photochemically active pigment-protein complexes from the green photosynthetic bacterium Prosthecochloris aestuarii. Biochim Biophys Acta 548: 427–432PubMedGoogle Scholar
  4. 4.
    H Vasmel, T Swarthoff, HJM Kramer and J Amesz (1983) Isolation and properties of a pigment protein complex associated with the reaction center of the green photosynthetic sulfur bacterium Prosthecochloris aestuarii. Biochim Biophys Acta 725: 361–367Google Scholar
  5. 5.
    U Feiler, W Nitschke and H Michel (1992) Characterization of an improved reaction center preparation from the photosynthetic green sulfur bacterium Chlorobium containing the FeS centers FAand FBand a bound cytochrome subunit. Biochemistry 31: 2608–2614PubMedCrossRefGoogle Scholar
  6. 6.
    JS Okkels, B K jr, O Hansson, I Svendsen, BL Mlller and HV Scheller (1992) A membrane-bound monoheme cytochromec551of a novel type is the immediate electron donorto P840 of the Chlorobium vibriforme photosynthetic reaction center complex. J Biol Chem 267: 21139–21145PubMedGoogle Scholar
  7. 7.
    H Oh-oka, S Kakutani, H Matsubara, R Malkin and S Itoh (1993) Isolation of the photoactive reaction center complex that contains three types of Fe-S centers and a cytochrome c subunit from the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum strain Larsen. Plant Cell Physiol 34: 93–101Google Scholar
  8. 8.
    N Kusumoto, K Inoue, H Nasu and H Sakurai (1994) Preparation of a photoactive reaction center complex containing photoreducible Fe-S centers and photooxidizable cytochrome c from the green sulfur bacterium Chlorobium tepidum. Plant Cell Physiol 35: 17–25Google Scholar
  9. 9.
    C Francke, HP Permentier, EM Franken, S Neerken and J Amesz (1997) Isolation and properties of photochemically active reaction center complexes from the green sulfur bacterium Prosthecochloris aestuarii. Biochemistry 36: 14167–14172PubMedCrossRefGoogle Scholar
  10. 10.
    C Griesbeck, C Hager-Braun, H Rogl and G Hauska (1998) Quantitation of P840 reaction center preparations from Chlorobium tepidum: Chlorophylls and FMO-protein. Biochim Biophys Acta 1365: 285–293Google Scholar
  11. 11.
    T Swarthoff, P Gast, AJ Hoff and J Amesz (1981) An optical and ESR investigation on the acceptor side of the reaction center of the green photosynthetic bacterium Prosthecochloris aestuarii. FEBS Lett 130: 93–98CrossRefGoogle Scholar
  12. 12.
    W Nitschke, U Feiler and AW Rutherford (1990) Photosynthetic reaction center of green sulfur bacteria studied by EPR. Biochemistry 29: 3834–3842PubMedGoogle Scholar
  13. 13.
    N Kusumoto, K Inoue, H Nasu and H Sakurai (1994) Preparation of a photoactive reaction center complex containing photoreducible Fe-S centers and photooxidizable cytochrome c from the green sulfur bacterium Chlorobium tepidum. Plant Cell Physiol 35: 17–25Google Scholar
  14. 14.
    W Nitschke, U Feiler, W Lockau and G Hauska (1987) The photosystem of the green sulfur bacterium Chlorobium limicola contains two early electron acceptors similar to photosystem I. FEBS Lett 218: 283–286CrossRefGoogle Scholar
  15. 15.
    AM Nuijs, H Vasmel, HLP Joppe, LNM Duysens and J Amesz (1985) Excited states and primary charge separation in the pigment system of the green photosynthetic bacterium Prosthecochloris aestuarii as studied by picosecond absorbance difference spectroscopy. Biochim Biophys Acta 807: 24–34Google Scholar
  16. 16.
    T Braumann, H Vasmel, LH Grimme and J Amesz (1986) Pigment composition of the photosynthetic membrane and reaction center of the green bacterium Prosthecochloris aestuarii. Biochim Biophys Acta 848: 83–91Google Scholar
  17. 17.
    VA Shuvalov, J Amesz and LNM Duysens (1986) Picosecond spectroscopy of isolated membranes of the photosynthetic green sulfur bacterium Prosthecochloris aestuarii upon selective excitation of the primary electron donor. Biochim Biophys Acta 851: 1–5Google Scholar
  18. 18.
    PJM van Kan (1989) Energy Transfer and Charge Separation in Photosynthetic Systems at Low Temperature, pp 89–100. Doctoral Thesis, Univ LeidenGoogle Scholar
  19. 19.
    EJ van de Meent, A Kobayashi, C Erkelens, PA van Veelen, SCM Otte, K Inoue, T Watanabe and J Amesz (1992) The nature of the primary electron acceptor in green sulfur bacteria. Biochim Biophys Acta 1102: 371–378Google Scholar
  20. 20.
    U Feiler, D Albouy, C Pourcet, T Mattioli, M Lutz and B Roberts (1994) Structure and binding site of the primary electron acceptor in the reaction center of Chlorobium. Biochemistry. 33: 7594–7599PubMedCrossRefGoogle Scholar
  21. 21.
    BK Pierson and JP Thornber (1983) Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-fl. Proc Nat Acad Sci, USA 80: 80–84Google Scholar
  22. 22.
    BK Pierson and RW Castenholz (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100: 283–305Google Scholar
  23. 23.
    H Vasmel and J Amesz (1983) Photoreduction of menaquinone in the reaction center of the green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 724: 118–124Google Scholar
  24. 24.
    C Kirmaier, RE Blankenship and D Holten (1986) Formation and decay of radical-pair P+/-in Chloroflexus aurantiacus reaction centers. Biochim Biophys Acta 850: 275–285Google Scholar
  25. 25.
    VA Shuvalov, H Vasmel, J Amesz and LNM Duysens (1986) Picosecond spectroscopy of the charge separation in reaction centers of Chloroflexus aurantiacus with selective excitation of the primary electron donor. Biochim Biophys Acta 851: 361–368Google Scholar
  26. 26.
    W Zinth and W Kaiser (1993) Time-resolved spectroscopy of the primary electron transfer in reaction centers of Rhodobacter sphaeroides and Rhodopseudomonas viridis. In: JR Norris and H Deisenhofer (eds) The Photosynthetic Reaction Center, Vol II, pp 71–88. Acad PressGoogle Scholar
  27. 27.
    H Gest and JR Favinger (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a new form of bacteriochlorophyll. Arch Microbiol 136: 11–16CrossRefGoogle Scholar
  28. 28.
    EJ van de Meent, FAM Kleinherenbrink and J Amesz (1990) Purification and properties of an antenna-reaction center complex from heliobacteria. Biochim Biophys Acta 1015: 223–230Google Scholar
  29. 29.
    JT Trost and RE Blankenship (1989) Isolation of a photoactive photosynthetic reaction center-core antenna complex from Heliobacillus mobilis. Biochemistry 28: 9898–9904PubMedCrossRefGoogle Scholar
  30. 30.
    M Kobayashi, EJ van de Meent, C Erkelens, J Amesz, I Ikegami and T Watanabe (1991) Bacteriochlorophyll g epimer as a possible reaction center component of heliobacteria. Biochim Biophys Acta 1057: 89–96Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Personalised recommendations