Advertisement

Three-Dimensional Photonic Crystals Made from Colloids

  • Arnout Imhof

5. Conclusions

In this chapter the fabrication and optical properties of three-dimensional photonic crystals made from colloids has been described. Recent progress has led to the preparation of photonic crystals with a high degree of order and a low defect density. Combination with templating methods has made it possible to achieve the high refractive index contrasts needed for useful photonic applications. The use of core-shell type composite particles or anisotropic particles to tune and improve photonic properties holds great promise for future research. In order to build actual photonic devices with colloidal crystals it will be necessary to insert lattice defects with a high degree of control. This is a much more challenging task in crystals formed by self-assembly than in those made by lithographic techniques. One way of reaching this goal was recently demonstrated by writing waveguide structures into a self-assembled crystal using multi-photon polymerization in a confocal microscope.208 External control is another important requirement. Indeed, switching of photonic crystals with electric fields has been achieved by filling colloidal crystals with liquid crystals.209 These examples show that self-assembly of colloidal particles is a powerful way of fabricating three-dimensional photonic crystals.

Keywords

Photonic Crystal Colloidal Crystal Refractive Index Contrast Photonic Band Structure Opal Photonic Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. 1.
    S. Hachisu, Y. Kobayashi, and A. Kose, Phase separation in monodisperse latices, J. Colloid Interface Sci. 42, 342–348 (1973).CrossRefGoogle Scholar
  2. 2.
    S. Hachisu and Y. Kobayashi, Kirkwood-Alder transition in monodisperse latexes. II. Aqueous latexes of high electrolyte concentration, J. Colloid Interface Sci. 46, 470–476 (1974).CrossRefGoogle Scholar
  3. 3.
    P. N. Pusey and W. van Megen, Phase behaviour of concentrated suspensions of nearly hard colloidal spheres, Nature 320, 340–342 (1986).CrossRefGoogle Scholar
  4. 4.
    J. V. Sanders, Colour of precious opal, Nature 204, 1151–1153 (1964).Google Scholar
  5. 5.
    J. B. Jones, J. V. Sanders, and E. R. Segnit, Structure of opal, Nature 204, 990–991 (1964).Google Scholar
  6. 6.
    J. V. Sanders and M. J. Murray, Ordered arrangements of spheres of two different sizes in opal, Nature 275, 201–202 (1978).CrossRefGoogle Scholar
  7. 7.
    P. L. Flaugh, S. E. O’Donnell, and S. A. Asher, Development of a new optical wavelength rejection filter: demonstration of its utility in Raman spectroscopy, Appl. Spectrosc. 38, 847–850 (1984).CrossRefGoogle Scholar
  8. 8.
    G. S. Pan, R. Kesavamoorthy, and S. A. Asher, Optically nonlinear Bragg diffracting nanosecond optical switches, Phys. Rev. Lett. 78, 3860–3863 (1997).CrossRefGoogle Scholar
  9. 9.
    J. H. Holtz and S. A. Asher, Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials, Nature 389, 829–832 (1997).Google Scholar
  10. 10.
    E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059–2062 (1987).CrossRefGoogle Scholar
  11. 11.
    S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486–2489 (1987)CrossRefGoogle Scholar
  12. 12.
    E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Photonic band-structure — the face-fentered-fubic fase employing nonspherical atoms, Phys. Rev. Lett. 67, 2295–2298 (1991).Google Scholar
  13. 13.
    C. M. Soukoulis (Ed.), Photonic Crystals and Light Localization in the 21st Century (Kluwer Academic, Dordrecht, The Netherlands, 2001).Google Scholar
  14. 14.
    S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, A three-dimensional photonic crystal operating at infrared wavelengths, Nature 394, 251–253 (1998).CrossRefGoogle Scholar
  15. 15.
    J. G. Fleming and S. Y. Lin, Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm, Opt. Lett. 24, 49–51 (1999).Google Scholar
  16. 16.
    S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Full three-dimensional photonic bandgap crystals at near-infrared wavelengths, Science 289, 604–606 (2000).CrossRefGoogle Scholar
  17. 17.
    I. I. Tarhan and G. H. Watson, Photonic band structure of fcc colloidal crystals, Phys. Rev. Lett. 76, 315–318 (1996).CrossRefGoogle Scholar
  18. 18.
    W. L. Vos, R. Sprik, A. van Blaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, Strong effects of photonic band structures on the diffraction of colloidal crystals, Phys. Rev. B 53, 16231–16235 (1996).Google Scholar
  19. 19.
    W. H. Zachariasen, Theory of X-Ray Diffraction in Crystals (Wiley, New York, 1945).Google Scholar
  20. 20.
    R. W. James, The Optical Principles of the Diffraction of X-Rays (G. Bell & Sons, London, 1948).Google Scholar
  21. 21.
    M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).Google Scholar
  22. 22.
    A. Moroz and C. Sommers, Photonic band gaps of three-dimensional face-centred cubic lattices, J. Phys. Cond. Matter 11, 997–1008 (1999).Google Scholar
  23. 23.
    R. Sprik, B. A. VanTiggelen, and A. Lagendijk, Optical emission in periodic dielectrics, Europhys. Lett. 35, 265–270 (1996).CrossRefGoogle Scholar
  24. 24.
    K. Busch and S. John, Photonic band gap formation in certain self-organizing systems, Phys. Rev. E 58, 3896–3908 (1998).CrossRefGoogle Scholar
  25. 25.
    K. M. Leung and Y. F. Liu, Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media, Phys. Rev. Lett. 65, 2646–2649 (1990).CrossRefGoogle Scholar
  26. 26.
    Z. Zhang and S. Satpathy, Electromagnetic wave propagation in periodic structures — Bloch wave solution of Maxwell equations, Phys. Rev. Lett. 65, 2650–2653 (1990).Google Scholar
  27. 27.
    K. M. Ho, C. T. Chan, and C. M. Soukoulis, Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett. 65, 3152–3155 (1990).Google Scholar
  28. 28.
    H. S. Sozuer, J. W. Haus, and R. Inguva, Photonic bands — Convergence problems with the plane-wave method, Phys. Rev. B 45, 13962–13972 (1992).Google Scholar
  29. 29.
    E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Donor and acceptor modes in photonic band-structure, Phys. Rev. Lett. 67, 3380–3383 (1991).Google Scholar
  30. 30.
    R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Photonic bound-states in periodic dielectric materials, Phys. Rev. B 44, 13772–13774 (1991).Google Scholar
  31. 31.
    J. B. Pendry and A. Mackinnon, Calculation of photon dispersion-relations, Phys. Rev. Lett. 69, 2772–2775 (1992).CrossRefGoogle Scholar
  32. 32.
    J. B. Pendry, Calculating photonic band structure, J. Phys. Cond. Matt. 8, 1085–1108 (1996)Google Scholar
  33. 33.
    A. Moroz, Density-of-states calculations and multiple-scattering theory for photons, Phys. Rev. B 51, 2068–2081 (1995).CrossRefGoogle Scholar
  34. 34.
    N. Stefanou, V. Karathanos, and A. Modinos, Scattering of electromagnetic-waves by periodic structures, J. Phys. Cond. Matt. 4, 7389–7400 (1992).Google Scholar
  35. 35.
    V. Yannopapas, N. Stefanou, and A. Modinos, Theoretical analysis of the photonic band structure of face-centred cubic colloidal crystals, J. Phys. Cond. Matt. 9, 10261–10270 (1997).Google Scholar
  36. 36.
    N. Stefanou, V. Yannopapas, and A. Modinos, MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals, Comput. Phys. Commun. 132, 189–196 (2000).Google Scholar
  37. 37.
    A. Taflove, Computational Electrodynamics. The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).Google Scholar
  38. 38.
    P. A. Rundquist, P. Photinos, S. Jagannathan, and S. A. Asher, Dynamical Bragg-diffraction from crystalline colloidal arrays, J. Chem. Phys. 91, 4932–4941 (1989).CrossRefGoogle Scholar
  39. 39.
    Y. Monovoukas, G. G. Fuller, and A. P. Gast, Optical anisotropy in colloidal crystals. J. Chem. Phys. 93, 8294–8299 (1990).CrossRefGoogle Scholar
  40. 40.
    Y. Monovoukas and A. P. Gast, A study of colloidal crystal morphology and orientation via polarizing microscopy, Langmuir 7, 460–468 (1991).CrossRefGoogle Scholar
  41. 41.
    K. W. K. Shung and Y. C. Tsai, Surface effects and band measurements in photonic crystals, Phys. Rev. B 48, 11265–11269 (1993).CrossRefGoogle Scholar
  42. 42.
    I. I. Tarhan and G. H. Watson, Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation, Phys. Rev. B 54, 7593–7597 (1996).Google Scholar
  43. 43.
    D. M. Mittleman, J. F. Bertone, P. Jiang, K. S. Hwang, and V. L. Colvin, Optical properties of planar colloidal crystals: Dynamical diffraction and the scalar wave approximation, J. Chem. Phys. 111, 345–354 (1999).CrossRefGoogle Scholar
  44. 44.
    G. S. Pan, A. K. Sood, and S. A. Asher, Polarization dependence of crystalline colloidal array diffraction, J. Appl. Phys. 84, 83–86 (1998).Google Scholar
  45. 45.
    S. Satpathy, Z. Zhang, and M. R. Salehpour, Theory of photon bands in 3-dimensional periodic dielectric structures, Phys. Rev. Lett. 64, 1239–1242 (1990).CrossRefGoogle Scholar
  46. 46.
    K. M. Leung and Y. F. Liu, Photon band structures — The plane-wave method, Phys. Rev. B 41, 10188–10190 (1990).CrossRefGoogle Scholar
  47. 47.
    M. S. Thijssen, R. Sprik, J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W. L. Vos, Inhibited light propagation and broadband reflection in photonic air-sphere crystals, Phys. Rev. Lett. 83, 2730–2733 (1999).CrossRefGoogle Scholar
  48. 48.
    Y. A. Vlasov, M. Deutsch, and D. J. Norris, Single-domain spectroscopy of self-assembled photonic crystals, Appl. Phys. Lett. 76, 1627–1629 (2000).CrossRefGoogle Scholar
  49. 49.
    J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin, Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals, Phys. Rev. Lett. 83, 300–303 (1999).CrossRefGoogle Scholar
  50. 50.
    K. P. Velikov, A. Moroz, and A. van Blaaderen, Photonic crystals of core-shell colloidal particles, Appl. Phys. Lett. 80, 49–51 (2002).CrossRefGoogle Scholar
  51. 51.
    W. L. Vos and H. M. van Driel, Higher order Bragg diffraction by strongly photonic fcc crystals: onset of a photonic bandgap, Phys. Lett. A 272, 101–106 (2000).CrossRefGoogle Scholar
  52. 52.
    W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Measurement of photonic band-structure in a 2-dimensional periodic dielectric array, Phys. Rev. Lett. 68, 2023–2026 (1992).Google Scholar
  53. 53.
    K. Sakoda, Group-theoretical classification of eigenmodes in three-dimensional photonic lattices, Phys. Rev. B 55, 15345–15348 (1997).CrossRefGoogle Scholar
  54. 54.
    Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, On-chip natural assembly of silicon photonic bandgap crystals, Nature 414, 289–293 (2001).CrossRefGoogle Scholar
  55. 55.
    P. Pieranski, Colloidal crystals, Contemp. Phys. 24, 25–73 (1983).Google Scholar
  56. 56.
    T. Yoshiyama, I. Sogami, and N. Ise, Kossel line analysis on colloidal crystals in semidilute aqueous solutions, Phys. Rev. Lett. 53, 2153–2156 (1984).CrossRefGoogle Scholar
  57. 57.
    T. Yoshiyama and I. S. Sogami, Kossel images as direct manifestations of the gap structure of the dispersion surface for colloidal crystals, Phys. Rev. Lett. 56, 1609–1612 (1986).CrossRefGoogle Scholar
  58. 58.
    R. D. Pradhan, J. A. Bloodgood, and G. H. Watson, Photonic band structure of bcc colloidal crystals, Phys. Rev. B 55, 9503–9507 (1997).Google Scholar
  59. 59.
    S. John and J. Wang, Quantum electrodynamics near a photonic band-gap — Photon bound-states and dressed atoms, Phys. Rev. Lett. 64, 2418–2421 (1990).CrossRefGoogle Scholar
  60. 60.
    S. John and J. Wang, Quantum optics of localized light in a photonic band-gap, Phys. Rev. B 43, 12772–12789 (1991).Google Scholar
  61. 61.
    Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, Existence of a photonic pseudogap for visible light in synthetic opals, Phys. Rev. B 55, 13357–13360 (1997).CrossRefGoogle Scholar
  62. 62.
    V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, Photonic band gap phenomenon and optical properties of artificial opals, Phys. Rev. E 55, 7619–7625 (1997).CrossRefGoogle Scholar
  63. 63.
    S. G. Romanov, A. V. Fokin, V. I. Alperovich, N. P. Johnson, and R. M. De La Rue, The effect of the photonic stop-band upon the photoluminescence of CdS in opal, Phys. Status Solidi A-Appl. Res. 164, 169–173 (1997).CrossRefGoogle Scholar
  64. 64.
    S. G. Romanov, A. V. Fokin, and R. M. De La Rue, Anisotropic photoluminescence in incomplete three-dimensional photonic band-gap environments, Appl. Phys. Lett. 74, 1821–1823 (1999).Google Scholar
  65. 65.
    T. Yamasaki and T. Tsutsui, Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres, Appl. Phys. Lett. 72, 1957–1959 (1998).CrossRefGoogle Scholar
  66. 66.
    A. Blanco, C. Lopez, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, CdS photoluminescence inhibition by a photonic structure, Appl. Phys. Lett. 73, 1781–1783 (1998).CrossRefGoogle Scholar
  67. 67.
    M. Megens, J. Wijnhoven, A. Lagendijk, and W. L. Vos, Light sources inside photonic crystals, J. Opt. Soc. Am. B 16, 1403–1408 (1999).Google Scholar
  68. 68.
    S. G. Romanov, A. V. Fokin, and R. M. De La Rue, Eu3+ emission in an anisotropic photonic band gap environment, Appl. Phys. Lett. 76, 1656–1658 (2000).CrossRefGoogle Scholar
  69. 69.
    K. Sumioka, H. Nagahama, and T. Tsutsui, Strong coupling of exciton and photon modes in photonic crystal infiltrated with organic-inorganic layered perovskite, Appl. Phys. Lett. 78, 1328–1330 (2001).CrossRefGoogle Scholar
  70. 70.
    A. J. Campillo, J. D. Eversole, and H. B. Lin, Cavity quantum electrodynamic enhancement of stimulated-emission in microdroplets, Phys. Rev. Lett. 67, 437–440 (1991).CrossRefGoogle Scholar
  71. 71.
    B. Y. Tong, P. K. John, Y. T. Zhu, Y. S. Liu, S. K. Wong, and W. R. Ware, Fluorescence-lifetime measurements in monodispersed suspensions of polystyrene particles, J. Opt. Soc. Am. B 10, 356–359 (1993).Google Scholar
  72. 72.
    M. J. A. de Dood, L. H. Slooff, A. Polman, A. Moroz, and A. van Blaaderen, Local optical density of states in SiO2 spherical microcavities: Theory and experiment, Phys. Rev. A 64, 033807 (2001).Google Scholar
  73. 73.
    M. J. A. de Dood, L. H. Slooff, A. Polman, A. Moroz, and A. van Blaaderen, Modified spontaneous emission in erbium-doped SiO2 spherical colloids, Appl. Phys. Lett. 79, 3585–3587 (2001).Google Scholar
  74. 74.
    K. H. Drexhage, Influence of a dielectric interface on fluorescence decay time, J. Lumines. 1,2, 693 (1970).Google Scholar
  75. 75.
    E. Snoeks, A. Lagendijk, and A. Polman, Measuring and modifying the spontaneous emission rate of Erbium near an interface, Phys. Rev. Lett. 74, 2459–2462 (1995).CrossRefGoogle Scholar
  76. 76.
    J. Martorell and N. M. Lawandy, Observation of inhibited spontaneous emission in a periodic dielectric structure, Phys. Rev. Lett. 65, 1877–1880 (1990).CrossRefGoogle Scholar
  77. 77.
    N. M. Lawandy, Fluorescence-lifetime measurements in monodispersed suspensions of polystyrene particles — Comment, J. Opt. Soc. Am. B 10, 2144–2146 (1993).CrossRefGoogle Scholar
  78. 78.
    M. Tomita, K. Ohosumi, and H. Ikari, Enhancement of molecular interactions in strongly scattering dielectric composite optical media, Phys. Rev. B 50, 10369–10372 (1994).CrossRefGoogle Scholar
  79. 79.
    E. P. Petrov, V. N. Bogomolov, Kalosha, II, and V. Gaponenko, Spontaneous emission of organic molecules embedded in a photonic crystal, Phys. Rev. Lett. 81, 77–80 (1998).CrossRefGoogle Scholar
  80. 80.
    Z. Y. Li and Z. Q. Zhang, Weak photonic band gap effect on the fluorescence lifetime in three-dimensional colloidal photonic crystals, Phys. Rev. B 63, 125106 (2001).Google Scholar
  81. 81.
    M. Megens, H. P. Schriemer, A. Lagendijk, and W. L. Vos, Comment on “Spontaneous emission of organic molecules embedded in a photonic crystal”, Phys. Rev. Lett. 83, 5401–5401 (1999).CrossRefGoogle Scholar
  82. 82.
    E. P. Petrov, V. N. Bogomolov, Kalosha, II, and S. V. Gaponenko, Comment on “Spontaneous emission of organic molecules embedded in a photonic crystal” — Reply, Phys. Rev. Lett. 83, 5402–5402 (1999).CrossRefGoogle Scholar
  83. 83.
    K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. A. Zakhidov, Observation of inhibited spontaneous emission and stimulated emission of rhodamine 6G in polymer replica of synthetic opal, Appl. Phys. Lett. 73, 3506–3508 (1998).CrossRefGoogle Scholar
  84. 84.
    S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, Enhancement and suppression of thermal emission by a three-dimensional photonic crystal, Phys. Rev. B 62, R2243–R2246 (2000).Google Scholar
  85. 85.
    H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals, Phys. Rev. A 63, 011801 (2001).CrossRefGoogle Scholar
  86. 86.
    A. F. Koenderink, L. Bechger, H. P. Schriemer, A. Lagendijk, and W. L. Vos, Broadband fivefold reduction of vacuum fluctuations probed by dyes in photonic crystals, Phys. Rev. Lett. 88, 143903 (2002).CrossRefGoogle Scholar
  87. 87.
    I. I. Tarhan, M. P. Zinkin, and G. H. Watson, Interferometric technique for the measurement of photonic band structure in colloidal crystals, Opt. Lett. 20, 1571–1573 (1995).CrossRefGoogle Scholar
  88. 88.
    B. T. Rosner, G. J. Schneider, and G. H. Watson, Interferometric investigation of photonic band-structure effects in pure and doped colloidal crystals, J. Opt. Soc. Am. B 15, 2654–2659 (1998).Google Scholar
  89. 89.
    A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, Large dispersive effects near the band edges of photonic crystals, Phys. Rev. Lett. 83, 2942–2945 (1999).CrossRefGoogle Scholar
  90. 90.
    Y. A. Vlasov, S. Petit, G. Klein, B. Honerlage, and C. Hirlimann, Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal, Phys. Rev. E 60, 1030–1035 (1999).CrossRefGoogle Scholar
  91. 91.
    K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, Photonic band-gaps in 3-dimensions —New layer-by-layer periodic structures, Solid State Commun. 89, 413–416 (1994).CrossRefGoogle Scholar
  92. 92.
    E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, Measurement of a 3-dimensional photonic band-gap in a crystal-structure made of dielectric rods, Phys. Rev. B 50, 1945–1948 (1994).Google Scholar
  93. 93.
    C. C. Cheng and A. Scherer, Fabrication of photonic band-gap crystals, J. Vac. Sci. Technol, B 13, 2696–2700 (1995).Google Scholar
  94. 94.
    C. C. Cheng, A. Scherer, V. Arbet-Engels, and E. Yablonovitch, Lithographic band gap tuning in photonic band gap crystals, J. Vac. Sci. Technol. B 14, 4110–4114 (1996).Google Scholar
  95. 95.
    A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J. M. Lourtioz, Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon, Appl. Phys. Lett. 77, 2943–2945 (2000).CrossRefGoogle Scholar
  96. 96.
    A. Birner, R. B. Wehrspohn, U. M. Gosele, and K. Busch, Silicon-based photonic crystals, Adv. Mater. 13, 377–388 (2001).CrossRefGoogle Scholar
  97. 97.
    J. Schilling, F. Muller, S. Matthias, R. B. Wehrspohn, U. Gosele, and K. Busch, Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter, Appl. Phys. Lett. 78, 1180–1182 (2001).CrossRefGoogle Scholar
  98. 98.
    S. Shoji and S. Kawata, Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin, Appl. Phys. Lett. 76, 2668–2670 (2000).CrossRefGoogle Scholar
  99. 99.
    M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature 404, 53–56 (2000).Google Scholar
  100. 100.
    Y. Monovoukas and A. P. Cast, The experimental phase-diagram of charged colloidal suspensions, J. Colloid Interface Sci. 128, 533–548 (1989).CrossRefGoogle Scholar
  101. 101.
    P. N. Pusey, W. van Megen, P. Bartlett, B. J. Ackerson, J. G. Rarity, and S. M. Underwood, Structure of crystals ofhard colloidal spheres, Phys. Rev. Lett. 63, 2753–2756 (1989).CrossRefGoogle Scholar
  102. 102.
    N._A. M. Verhaegh, J. S. van Duijneveldt, A. van Blaaderen, and H. N. W. Lekkerkerker, Direct observation of stacking disorder in a colloidal crystal, J. Chem. Phys. 102, 1416–1421 (1995).CrossRefGoogle Scholar
  103. 103.
    V. N. Astratov, Y. A. Vlasov, O. Z. Karimov, A. A. Kaplyanskii, Y. G. Musikhin, N. A. Bert, V. N. Bogomolov, and A. V. Prokofiev, Photonic band gaps in 3D ordered fcc silica matrices. Phys. Lett. A 222, 349–353 (1996).CrossRefGoogle Scholar
  104. 104.
    S. G. Romanov, N. P. Johnson, A. V. Fokin, V. Y. Butko, H. M. Yates, M. E. Pemble, and C. M. S. Torres, Enhancement of the photonic gap of opal-based three-dimensional gratings, Appl. Phys. Lett. 70, 2091–2093 (1997).CrossRefGoogle Scholar
  105. 105.
    H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud, Photonic crystal properties of packed submicrometric SiO2 spheres, Appl. Phys. Lett. 71, 1148–1150 (1997).CrossRefGoogle Scholar
  106. 106.
    H. Miguez, F. Meseguer, C. Lopez, A. Blanco, J. S. Moya, J. Requena, A. Mifsud, and V. Fornes, Control of the photonic crystal properties of fcc-packed submicrometer SiO2 spheres by sintering, Adv. Mater. 10, 480–483 (1998).Google Scholar
  107. 107.
    H. Miguez, A. Blanco, F. Meseguer, C. Lopez, H. M. Yates, M. E. Pemble, V. Fornes, and A. Mifsud, Bragg diffraction from indium phosphide infilled fcc silica colloidal crystals, Phys. Rev. B 59, 1563–1566 (1999).Google Scholar
  108. 108.
    S. G. Romanov, T. Maka, C. M. S. Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals, Phys. Rev. E 63, 056603 (2001).Google Scholar
  109. 109.
    A. Reynolds, F. Lopez-Tejeira, D. Cassagne, F. J. Garcia-Vidal, C. Jouanin, and J. Sanchez-Dehesa, Spectral properties of opal-based photonic crystals having a silica matrix, Phys. Rev. B 60, 1142211426 (1999).Google Scholar
  110. 110.
    R. Biswas, M. M. Sigalas, G. Subramania, and K. M. Ho, Photonic band gaps in colloidal systems, Phys. Rev. B 57, 3701–3705 (1998).Google Scholar
  111. 111.
    R. Biswas, M. M. Sigalas, G. Subramania, C. M. Soukoulis, and K. M. Ho, Photonic band gaps of porous solids, Phys. Rev. B 61, 4549–4553 (2000).Google Scholar
  112. 112.
    A. Imhof and D. J. Pine, Ordered macroporous materials by emulsion templating, Nature 389, 948–951 (1997).Google Scholar
  113. 113.
    A. Imhof and D. J. Pine, Uniform macroporous ceramics and plastics by emulsion templating, Adv. Mater. 10, 697–700 (1998).CrossRefGoogle Scholar
  114. 114.
    O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, Porous silica via colloidal crystallization, Nature 389, 447–448 (1997).CrossRefGoogle Scholar
  115. 115.
    O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, Microstructured porous silica obtained via colloidal crystal templates, Chem. Mater. 10, 3597–3602 (1998).CrossRefGoogle Scholar
  116. 116.
    B. T. Holland, C. F. Blanford, and A. Stein, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids, Science 281, 538–540 (1998).CrossRefGoogle Scholar
  117. 117.
    B. T. Holland, C. F. Blanford, T. Do, and A. Stein, Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites, Chem. Mater. 11, 795–805 (1999).CrossRefGoogle Scholar
  118. 118.
    J. E. G. J. Wijnhoven and W. L. Vos, Preparation of photonic crystals made of air spheres in titania, Science 281, 802–804 (1998).CrossRefGoogle Scholar
  119. 119.
    C. J. Brinker and G. W. Scherer, Sol-Gel Science (Academic, San Diego, 1990).Google Scholar
  120. 120.
    A. Imhof and D. J. Pine, in Recent Advances in Catalytic Materials, edited by N. M. Rodriguez, S. L. Soled and J. Hrbek (Materials Research Society, Boston, 1997), Vol. 497, p. 167–172.Google Scholar
  121. 121.
    M. Antonietti, B. Berton, C. Goeltner, and H. P. Hentze, Synthesis of mesoporous silica with large pores and bimodal size distribution by templating of polymer latices, Adv. Mater. 10, 154–159 (1998).CrossRefGoogle Scholar
  122. 122.
    J. S. Yin and Z. L. Wang, Template-assisted self-assembly and cobalt doping of ordered mesoporous titania nanostructures, Adv. Mater. 11, 469–472 (1999).CrossRefGoogle Scholar
  123. 123.
    A. Richel, N. P. Johnson, and D. W. McComb, Observation of Bragg reflection in photonic crystals synthesized from air spheres in a titania matrix, Appl. Phys. Lett. 76, 1816–1818 (2000).CrossRefGoogle Scholar
  124. 124.
    J. Wijnhoven, L. Bechger, and W. L. Vos, Fabrication and characterization of large macroporous photonic crystals in titania, Chem. Mater. 13, 4486–4499 (2001).CrossRefGoogle Scholar
  125. 125.
    M. Muller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Photonic crystal films with high refractive index contrast, Adv. Mater. 12, 1499–1503 (2000).Google Scholar
  126. 126.
    S. A. Johnson, P. J. Ollivier, and T. E. Mallouk, Ordered mesoporous polymers of tunable pore size from colloidal silica templates, Science 283, 963–965 (1999).Google Scholar
  127. 127.
    A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, Carbon structures with three-dimensional periodicity at optical wavelengths, Science 282, 897–901 (1998).CrossRefGoogle Scholar
  128. 128.
    Y. A. Vlasov, N. Yao, and D. J. Norris, Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots, Adv. Mater. 11, 165–169 (1999).CrossRefGoogle Scholar
  129. 129.
    P. Jiang, K. S. Hwang, D. M. Mittleman, J. F. Bertone, and V. L. Colvin, Template-directed preparation of macroporous polymers with oriented and crystalline arrays of voids, J. Am. Chem. Soc. 121, 11630–11637 (1999).Google Scholar
  130. 130.
    A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. López, F. Meseguer, H. Míguez, J. P. Mondía, G. A. Ozin, O. Toader, H. M. van Driel, Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers, Nature 405, 437–440 (2000).Google Scholar
  131. 131.
    G. Subramanian, V. N. Manoharan, J. D. Thorne, and D. J. Pine, Ordered macroporous materials by colloidal assembly: A possible route to photonic bandgap materials, Adv. Mater. 11, 1261–1265 (1999).Google Scholar
  132. 132.
    G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K. M. Ho, Optical photonic crystals fabricated from colloidal systems, Appl. Phys. Lett. 74, 3933–3935 (1999).CrossRefGoogle Scholar
  133. 133.
    G. Subramania, R. Biswas, K. Constant, M. M. Sigalas, and K. M. Ho, Structural characterization ofthin film photonic crystals, Phys. Rev. B 63, 235111 (2001).CrossRefGoogle Scholar
  134. 134.
    Q. B. Meng, Z. Z. Gu, O. Sato, and A. Fujishima, Fabrication of highly ordered porous structures, Appl. Phys. Lett. 77, 4313–4315 (2000).Google Scholar
  135. 135.
    O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, A class of porous metallic nanostructures, Nature 401, 548–548 (1999).CrossRefGoogle Scholar
  136. 136.
    P. Tessier, O. D. Velev, A. T. Kalambur, A. M. Lenhoff, J. F. Rabolt, and E. W. Kaler, Structured metallic films for optical and spectroscopic applications via colloidal crystal templating, Adv. Mater. 13, 396–400 (2001).CrossRefGoogle Scholar
  137. 137.
    S. H. Park and Y. Xia, Fabrication of three-dimensional macroporous membranes with assemblies of microspheres as templates, Chem. Mater. 10, 1745–1747 (1998).Google Scholar
  138. 138.
    M. Deutsch, Y. A. Vlasov, and D. J. Norris, Conjugated-polymerphotonic crystals, Adv. Mater. 12, 1176–1180 (2000).CrossRefGoogle Scholar
  139. 139.
    H. Miguez, F. Meseguer, C. Lopez-Tejeira, and J. Sanchez-Dehesa, Synthesis and photonic bandgap characterization of polymer inverse opals, Adv. Mater. 13, 393–396 (2001).Google Scholar
  140. 140.
    H. W. Yan, C. F. Blanford, B. T. Holland, W. H. Smyrl, and A. Stein, General synthesis of periodic macroporous solids bytemplated salt precipitation and chemical conversion, Chem. Mater. 12, 1134–1141 (2000).Google Scholar
  141. 141.
    H. Yan, C. F. Blanford, B. T. Holland, M. Parent, W. H. Smyrl, and A. Stein, A chemical synthesis of periodic macroporous NiO and metallic Ni, Adv. Mater. 11, 1003–1006 (1999).CrossRefGoogle Scholar
  142. 142.
    P. V. Braun and P. Wiltzius, Electrochemically grown photonic crystals, Nature 402, 603–604 (1999).CrossRefGoogle Scholar
  143. 143.
    P. V. Braun and P. Wiltzius, Electrochemical fabrication of 3D microperiodic porous materials, Adv. Mater. 13, 482–485 (2001).Google Scholar
  144. 144.
    J. Wijnhoven, S. J. M. Zevenhuizen, M. A, Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, Electrochemical assembly of ordered macropores in gold, Adv. Mater. 12, 888–890 (2000).CrossRefGoogle Scholar
  145. 145.
    M. C. Netti, S. Coyle, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, Confined surface plasmons in gold photonic nanocavities, Adv. Mater. 13, 1368–1370 (2001).Google Scholar
  146. 146.
    P. Jiang, J. Cizeron, J. F. Bertone, and V. L. Colvin, Preparation of macroporous metal films from colloidal crystals, J. Am. Chem. Soc. 121, 7957–7958 (1999).Google Scholar
  147. 147.
    N. Eradat, J. D. Huang, Z. V. Vardeny, A. A. Zakhidov, I. Khayrullin, I. Udod, and R. H. Baughman, Optical studies of metal-infiltrated opal photonic crystals, Synthetic Metals 116, 501–504 (2001).Google Scholar
  148. 148.
    H. Miguez, E. Chomski, F. Garcia-Santamaria, M. Ibisate, S. John, C. Lopez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition, Adv. Mater. 13, 1634–1637 (2001).Google Scholar
  149. 149.
    N. D. Denkov, O. D. Velev, P. A. Kralchevsky, 1. B. Ivanov, H. Yoshimura, and K. Nagayama, Mechanism of formation of 2-dimensional crystals from latex particles on substrates, Langmuir 8, 3183–3190 (1992).CrossRefGoogle Scholar
  150. 150.
    N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, 2-Dimensional crystallization, Nature 361, 26–26 (1993).CrossRefGoogle Scholar
  151. 151.
    P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Single-crystal colloidal multilayers of controlled thickness, Chem. Mater. 11, 2132–2140 (1999).CrossRefGoogle Scholar
  152. 152.
    M. E. Turner, T. J. Trentler, and V. L. Colvin, Thin films of macroporous metal oxides, Adv. Mater. 13, 180–183 (2001).CrossRefGoogle Scholar
  153. 153.
    S. H. Park, D. Qin, and Y. Xia, Crystallization of mesoscale particles over large areas, Adv. Mater. 10, 1028–1032 (1998).Google Scholar
  154. 154.
    S. H. Park and Y. Xia, Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters, Langmuir 15, 266–273 (1999).Google Scholar
  155. 155.
    B. Gates, D. Qin, and Y. Xia, Assembly of nanoparticles into opaline structures over large areas, Adv. Mater. 11, 466–469 (1999).CrossRefGoogle Scholar
  156. 156.
    B. T. Mayers, B. Gates, and Y. Xia, Crystallization of mesoscopic colloids into 3D opaline lattices in packing cells fabricated by replica molding, Adv. Mater. 12, 1629–1632 (2000).CrossRefGoogle Scholar
  157. 157.
    R. M. Amos, J. G. Rarity, P. R. Tapster, T. J. Shepherd, and S. C. Kitson, Fabrication of large-area face-centered-cubic hard-sphere colloidal crystals by shear alignment, Phys. Rev. E 61, 2929–2935 (2000).CrossRefGoogle Scholar
  158. 158.
    M. Trau, D. A. Saville, and I. A. Aksay, Field-induced layering of colloidal crystals, Science 272, 706–709 (1996).Google Scholar
  159. 159.
    M. Holgado, et al., Electrophoretic deposition to control artificial opal growth, Langmuir 15, 4701–4704 (1999).CrossRefGoogle Scholar
  160. 160.
    R. C. Hayward, D. A. Saville, and I. A. Aksay, Electrophoretic assembly of colloidal crystals with optically tunable micropatterns, Nature 404, 56–59 (2000).Google Scholar
  161. 161.
    A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, and G. A. Ragoisha, Electrophoretic deposition of latex-based 3D colloidal photonic crystals: A technique for rapid production of high-quality opals, Chem. Mater. 12, 2721–2726 (2000).Google Scholar
  162. 162.
    A. van Blaaderen, R. Ruel, and P. Wiltzius, Template-directed colloidal crystallization, Nature 385, 321–324 (1997).Google Scholar
  163. 163.
    A. van Blaaderen and P. Wiltzius, Growing large, well-oriented colloidal crystals, Adv. Mater. 9, 833 (1997).Google Scholar
  164. 164.
    P. V. Braun, R. W. Zehner, C. A. White, M. K. Weldon, C. Kloc, S. S. Patel, and P. Wiltzius, Epitaxial growth of high dielectric contrast three-dimensional photonic crystals, Adv. Mater. 13, 721–724 (2001).Google Scholar
  165. 165.
    A. van Blaaderen et al., in Photonic Crystals and Light Localization in the 21st Century, edited by C. M. Soukoulis (Kluwer Academic, Dordrecht, 2001).Google Scholar
  166. 166.
    Y. D. Yin and Y. N. Xia, Growth of large colloidal crystals with their (100) planes orientated parallel to the surfaces of supporting substrates, Adv. Mater. 14, 605–608 (2002).CrossRefGoogle Scholar
  167. 167.
    S. Hachisu and S. Yoshimura, Nature 283, 188 (1980).CrossRefGoogle Scholar
  168. 168.
    P. Bartlett, R. H. Ottewill, and P. N. Pusey, Superlattice formation in binary mixtures of hard-sphere colloids, Phys. Rev. Lett. 68, 3801–3804 (1992).CrossRefGoogle Scholar
  169. 169.
    K. P. Velikov, C. G. Christova, R. P. A. Dullens, and A. van Blaaderen, Layer-by-layer growth of binary colloidal crystals, Science 296, 106–109 (2002).CrossRefGoogle Scholar
  170. 170.
    U. Dassanayake, S. Fraden, and A. van Blaaderen, Structure of electrorheological fluids, J. Chem. Phys. 112, 3851–3858 (2000).CrossRefGoogle Scholar
  171. 171.
    F. García-Santamaría, C. López, F. Meseguer, F. López-Tejeira, J. Sánchez-Dehesa, and H. T. Miyazaki, Opal-like photonic crystal with diamond lattice, Appl. Phys. Lett. 79, 2309–2311 (2001).Google Scholar
  172. 172.
    H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope, J. Appl. Phys. 87, 7152–7158 (2000).CrossRefGoogle Scholar
  173. 173.
    R. D. Pradhan, Tarhan, II, and G. H. Watson, Impurity modes in the optical stop bands of doped colloidal crystals, Phys. Rev. B 54, 13721–13726 (1996).CrossRefGoogle Scholar
  174. 174.
    Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, Different regimes of light localization in a disordered photonic crystal, Phys. Rev. B 60, 1555–1562 (1999).CrossRefGoogle Scholar
  175. 175.
    Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, Manifestation of intrinic defects in optical properties of self-organized opal photonic crystals, Phys. Rev. E 61, 5784–5793 (2000).Google Scholar
  176. 176.
    A. F. Koenderink, M. Megens, G. van Soest, W. L. Vos, and A. Lagendijk, Enhanced backscattering from photonic crystals, Phys. Lett. A 268, 104–111 (2000).Google Scholar
  177. 177.
    J. Huang, N. Eradat, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, Anomalous coherent backscattering of light from opal photonic crystals, Phys. Rev. Lett. 86, 4815–4818 (2001).CrossRefGoogle Scholar
  178. 178.
    Z. Y. Li and Z. Q. Zhang, Fragility of photonic band gaps in inverse-opal photonic crystals, Phys. Rev. B 62, 1516–1519 (2000).Google Scholar
  179. 179.
    Z. Y. Li and Z. Q. Zhang, Photonic bandgaps in disordered inverse-opal photonic crystals, Adv. Mater. 13, 433–436 (2001).Google Scholar
  180. 180.
    S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Theoretical Investigation of Fabrication-Related Disorder On the Properties of Photonic Crystals, J. Appl. Phys. 78, 1415–1418 (1995).CrossRefGoogle Scholar
  181. 181.
    A. Chutinan and S. Noda, Effects of structural fluctuations on the photonic bandgap during fabrication of a photonic crystal, J. Opt. Soc. Am. B 16, 240–244 (1999).Google Scholar
  182. 182. M.
    M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, Effect of disorder on photonic band gaps, Phys. Rev. B 59, 12767–12770 (1999).CrossRefGoogle Scholar
  183. 183.
    V. Yannopapas, N. Stefanou, and A. Modinos, Effect of stacking faults on the optical properties of inverted opals, Phys. Rev. Lett. 86, 4811–4814 (2001).CrossRefGoogle Scholar
  184. 184.
    F. Caruso, Nanoengineering of particle surfaces, Adv. Mater. 13, 11–22 (2001).Google Scholar
  185. 185.
    A. van Blaaderen and A. Vrij, Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres, Langmuir 8, 2921–2931 (1992).Google Scholar
  186. 186.
    A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Mohwald, A. Eychmuller, and H. Weller, Nano-and microengineering: Three-dimensional colloidal photonic crystals prepared from submicrometer-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells, Adv. Mater. 12, 333–337 (2000).CrossRefGoogle Scholar
  187. 187.
    P. Jiang, J. F. Bertone, and V. L. Colvin, A lost-wax approach to monodisperse colloids and their crystals, Science 291, 453–457 (2001).CrossRefGoogle Scholar
  188. 188.
    R. Rengarajan, P. Jiang, D. C. Larrabee, V. L. Colvin, and D. M. Mittleman, Colloidal photonic superlattices, Phys. Rev. B 64, 205103 (2001).CrossRefGoogle Scholar
  189. 189.
    A. Imhof, Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells. Langmuir 17, 3579–3585 (2001).CrossRefGoogle Scholar
  190. 190.
    G. R. Yi and S. M. Yang, Bandgap engineering of face-centered cubic photonic crystals made of hollow spheres, J. Opt. Soc. Am. B 18, 1156–1160 (2001).Google Scholar
  191. 191.
    A. Moroz, Three-dimensional complete photonic-band-gap structures in the visible, Phys. Rev. Lett. 83, 5274–5277 (1999).CrossRefGoogle Scholar
  192. 192.
    A. Moroz, Photonic crystals of coated metallic spheres, Europhys. Lett. 50, 466–472 (2000).CrossRefGoogle Scholar
  193. 193.
    W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng, Robust photonic band gap from tunable scatterers, Phys. Rev. Lett. 84, 2853–2856 (2000).Google Scholar
  194. 194.
    Z. L. Wang, C. T. Chan, W. Y. Zhang, N. B. Ming, and P. Sheng, Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency, Phys. Rev. B 64, 113108 (2001).Google Scholar
  195. 195.
    S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Nanoengineering of optical resonances, Chem. Phys. Lett. 288, 243–247 (1998).CrossRefGoogle Scholar
  196. 196.
    C. Graf and A. van Blaaderen, Metallodielectric colloidal core-shell particles for photonic applications, Langmuir 18, 524–534 (2002).CrossRefGoogle Scholar
  197. 197. J.
    B. Jackson and N. J. Halas, Silver nanoshells: Variations in morphologies and optical properties, J. Phys. Chem. B 105, 2743–2746 (2001).CrossRefGoogle Scholar
  198. 198.
    A. B. R. Mayer, W. Grebner, and R. Wannemacher, Preparation of silver-latex composites, J. Phys. Chem. B 104, 7278–7285 (2000).Google Scholar
  199. 199.
    S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, Light scattering from dipole and quadrupole nanoshell antennas, Appl. Phys. Lett. 75, 1063–1065 (1999).Google Scholar
  200. 200.
    S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates, J. Chem. Phys. 111, 4729–4735 (1999).CrossRefGoogle Scholar
  201. 201.
    M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission, Nano Letters 1, 309–314 (2001).CrossRefGoogle Scholar
  202. 202.
    J. W. Haus, H. S. Sozuer, and R. Inguva, Photonic bands — Ellipsoidal dielectric atoms in an f.c.c. lattice, J. Mod. Opt. 39, 1991–2005 (1992).Google Scholar
  203. 203.
    Z. Y. Li, J. Wang, and B. Y. Gu, Creation of partial band gaps in anisotropic photonic-band-gap structures, Phys. Rev. B 58, 3721–3729 (1998).Google Scholar
  204. 204.
    E. Matijevic, Preparation and properties of uniform size colloids, Chem. Mater. 5, 412–426 (1993).CrossRefGoogle Scholar
  205. 205.
    Y. Lu, Y. D. Yin, and Y. N, Xia, Three-dimensional photonic crystals with non-spherical colloids as building blocks, Adv. Mater. 13, 415–420 (2001).Google Scholar
  206. 206.
    E. Snoeks, A. van Blaaderen, T. van Dillen, C. M. van Kats, M. L. Brongersma, and A. Polman, Colloidal ellipsoids with continuously variable shape, Adv. Mater. 12, 1511–1514 (2000).CrossRefGoogle Scholar
  207. 207.
    E. Snoeks, A. van Blaaderen, T. van Dillen, C. M. van Kats, K. Velikov, M. L. Brongersma, and A. Polman, Colloidal assemblies modified by ion irradiation, Nuclear Instruments & Methods in Physics Research Section B 178, 62–68 (2001).Google Scholar
  208. 208.
    W. M. Lee, S. A. Pruzinsky, and P. V. Braun, Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals, Adv. Mater. 14, 271–274 (2002).Google Scholar
  209. 209.
    K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal, Appl. Phys. Lett. 75, 932–934 (1999).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Arnout Imhof
    • 1
  1. 1.Arnout Imhof, Debye InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations