Advertisement

A Zpf-Mediated Cosmological Origin of Electron Inertia

  • M. Ibison
Conference paper
Part of the Fundamental Theories of Physics book series (FTPH, volume 126)

Abstract

Support is found for a fundamental role for the electromagnetic zero-point-field (ZPF) in the origin of inertia. Simply by requiring that that a universal noise field be selfconsistent in the presence of the lightest charge, it is shown that this field must be the ZPF, and that the mass of that charge must be close to 10 −30 kg. The ZPF functions as homeostatic regulator, with the electron mass decided by cosmological quantities. The calculation validates Dirac’s second Large Number hypothesis.

Keywords

Electron Mass Inertial Mass Noise Field Electron Inertia Hubble Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haisch, B., Rueda, A., and Puthoff, H. E. (1994) Inertia as a zero-point-field Lorentz force, Phys. Rev. A 49, 678–694.CrossRefADSGoogle Scholar
  2. 2.
    Haisch, B., Rueda, A., and Puthoff, H. E. (1997) Physics of the zero-point-field: Implications for inertia, gravitation and mass, Speculations in Science & Technology 20, 99–114.CrossRefGoogle Scholar
  3. 3.
    Haisch, B., Rueda, A., and Puthoff, H. E. (1998) Advances in the proposed electromagnetic zero-point field theory of inertia, proc. 34th AIAA/ASME/SAE/ASEE AIAA Joint Propulsion Conference, AIAA paper 98-3143.Google Scholar
  4. 4.
    Rueda, A., and Haisch, B., (1998) Contribution to inertial mass by reaction of the vacuum to accelerated motion. Found. Phys. 28, 1057–1108.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Rueda, A., and Haisch, B., (1998) Inertia as reaction of the vacuum to accelerated motion, Phys. Letters A 240, 115–126.CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Haisch B. and Rueda, A. (1998) The zero-point field and inertia, in G. Hunter, S. Jeffers & J.-P. Vigier (eds.) Causality and Locality in Modern Physics, Kluwer Academic Publishers, 171–178.Google Scholar
  7. 7.
    Rueda, A. and Haisch B. (1998) Electromagnetic vacuum and inertial mass, in G. Hunter, S. Jeffers & J.-P. Vigier (eds.) Causality and Locality in Modern Physics, Kluwer Academic Publishers, 179–186.Google Scholar
  8. 8.
    Haisch, B., and Rueda, A., (1999) Progress in establishing a connection between the electromagnetic zero-point field and inertia, in M. S. El-Genk (ed.) Proc. Space Technology and Applications International Forum (STAIF-1999), AIP Conf. Publication 458, 988–994.Google Scholar
  9. 9.
    Haisch, B., and Rueda, A. (1999) Inertial mass viewed as reaction of the vacuum to accelerated motion, Proc. NASA Breakthrough Propulsion Physics Workshop, NASA/CP-1999-208694, pp. 65.Google Scholar
  10. 10.
    Haisch, B., and Rueda, A., (2000) Toward an interstellar mission: zeroing in on the zero-point-field inertia resonance, Proc. Space Technology and Applications International Forum (STAIF-2000), AIP Conf. Publication 504, 1047–1054.Google Scholar
  11. 11.
    Haisch, B., Rueda, A., and Dobyns, Y. (2000) Inertial mass and the quantum vacuum fields, Annalen der Physik, in press.Google Scholar
  12. 12.
    Kalitisin, N. S. (1953) JETP 25, pp. 407.Google Scholar
  13. 13.
    Braffort, P., Spighel, M., and Tzara, C. (1954) Acad. Sci. Paris, Comptes Rendus 239, 157.zbMATHGoogle Scholar
  14. 14.
    Marshall, T. W. (1963) Proc. R. Soc. London, Ser. A 275, pp. 475.ADSMathSciNetGoogle Scholar
  15. 15.
    Boyer, T. H. (1980) A brief survey of Stochastic Electrodynamics, in A. O. Barut (ed.), Foundations of Radiation Theory and Quantum Electrodynamics, Plenum Press, New York, 49–63.Google Scholar
  16. 16.
    Dirac, P. A. M. (1979) The Large numbers hypothesis and the Einstein theory of gravitation, Proc. R. Soc. London, Ser. A 365, 19–30.ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Dirac, P. A. M. (1938) Proc. R. Soc. London, Ser. A 165, pp. 199.ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Davies, P. C. W. (1992) Mach’s Principle, Guardian Newspaper, 22nd September, “http://www.physics.adelaide.edu.au/itp/staff/pcwd/Guardian/1994/940922Mach.html”.
  19. 19.
    Jammer, M. (1999) Concepts of mass in Contemporary Physics and Philosophy, Princeton University Press, Princeton.Google Scholar
  20. 20.
    Matthews, R. (1994) Inertia: Does empty space put up the resistance? Science 263, 612–613.ADSCrossRefGoogle Scholar
  21. 21.
    Sakharov, A. D. (1968) Vacuum fluctuations in curved space and the theory of gravitation, Sov. Phys. Doklady 12, 1040–1041.ADSGoogle Scholar
  22. 22.
    Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973) Gravitation, Freeman, San Francisco.Google Scholar
  23. 23.
    Candelas, P. (1982) Vacuum energy in the presence of dielectric and conducting surfaces, Annals of Physics 143, 241–295.CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Alpher, R. A. (1973) Large numbers, Cosmology, and Gamow, American Scientist 61, 51–58.ADSGoogle Scholar
  25. 25.
    Harrison, E. R. (1972) The cosmic numbers, Physics Today 25, 30–34.CrossRefADSGoogle Scholar
  26. 26.
    Puthoff, H.E. (1989) Source of vacuum electromagnetic zero-point energy, Phys. Rev. A 40, 4857–4862.CrossRefADSGoogle Scholar
  27. 27.
    Puthoff, H.E. (1991) Reply to “Comment on’ source of vacuum electromagnetic zero-point energy’”, Phys. Rev. A 44, 3385–3386.ADSCrossRefGoogle Scholar
  28. 28.
    Sharp, D. H. (1980) Radiation reaction in non-relativistic quantum theory, in A. O. Barut (ed.), Foundations of Radiation Theory and Quantum Electrodynamics, Plenum Press, New York, 127–141.Google Scholar
  29. 29.
    Wyler, A. (1969) Theorie de la Relativité — L’espace symétrique du groupe des équations de Maxwell, Acad. Sci. Paris, Comptes Rendus 269A, 743–745.MathSciNetGoogle Scholar
  30. 30.
    GBL (1971) A mathematician’s version of the fine-structure constant. Physics Today 24, 17–19.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M. Ibison
    • 1
  1. 1.Institute for Advanced Studies at AustinAustinUSA

Personalised recommendations