Non-Abelian Gauge Groups for Real and Complex Amended Maxwell’s Equations
- 1 Citations
- 406 Downloads
Abstract
We have analyzed, calculated and extended the modification of Maxwell’s equations in a complex Minkowski metric, M4 in a C2 space using the SU2gauge, SL(2,c) and other gauge groups, such as SUn for n>2 expanding the U1 gauge theories of Weyl. This work yields additional predictions beyond the electroweak unification scheme. Some of these are: 1) modified gauge invariant conditions, 2) short range non-Abelian force terms and Abelian long range force terms in Maxwell’s equations, 3) finite but small rest of the photon, and 4) a magnetic monopole like term and 5) longitudinal as well as transverse magnetic and electromagnetic field components in a complex Minkowskimetric M4 in a C4 space.
Keywords
Gauge Theory Gauge Condition Magnetic Monopole Nonlocality Property Electromagnetic Field ComponentPreview
Unable to display preview. Download preview PDF.
References
- 1.P. Penrose and E.J. Newman, Proc. Roy. Soc. A363, 445 (1978).ADSMathSciNetGoogle Scholar
- 2.E.T. Newman, J. Math. Phys. 14, 774 (1973).zbMATHCrossRefADSGoogle Scholar
- 3.R.O. Hansen and E.T. Newman, Gen. Rel. and Grav. 6, 216 (1975).MathSciNetGoogle Scholar
- 4.E.T. Newman, Gen. Rel. and Grav. 7, 107 (1976).CrossRefADSGoogle Scholar
- 5.H.P. Stapp Phys. Rev. A47, 847 (1993) and Private Communication.ADSGoogle Scholar
- 6.J.S. Bell, Physics 1, 195 (1964).Google Scholar
- 7.J.F. Clauser and W.A. Horne Phys. Rev. 10D, 526 (1974) and private communication with J. Clauser 1977.ADSGoogle Scholar
- 8.A. Aspect, et. al. Phys. Rev. 49, 1804 (1982) and private communication.ADSMathSciNetGoogle Scholar
- 9.E.T. Newman and E.T. Newman, third MG meeting on Gen. Rel., Ed. Ha Nang, Amsterdam Netherlands, North-Holland, pgs 51–55 (1983).Google Scholar
- 10.Th. Kaluza, sitz. Berlin Press, A. Kad. Wiss, 968 (1921).Google Scholar
- 11.
- 12.J.P. Vigier, Found. Of Phys. 21, 125 (1991).MathSciNetCrossRefADSGoogle Scholar
- 13.M.W. Evans and J.P. Vigier “the enigmatic photon” 1 and 2 “Non-Abelian Electrodynamics”, Kluwer Acad. Dordrecht (1994, 1995, 1996).Google Scholar
- 14.E.A. Rauscher, Bull. Am. Phys. Soc. 21, 1305 (1976).Google Scholar
- 15.E.A. Rauscher, J. Plasma Phys. 2.Google Scholar
- 16.T.T. Wu and C.N. Yang, “Concepts of Nonintergreble phase factors and global formulation of gauge fields”, Phys. Rev. D12, 3845 (1975).ADSMathSciNetGoogle Scholar
- 17.E.A. Rauscher, “D and R Spaces, Lattice Groups and Lie Algebras and their Structure”, April 17, 1999.Google Scholar
- 18.E.A. Rauscher “Soliton Solutions to the Schrödinger Equation in Complex Minkowski Space”, pps 89–105, Proceeding of the First International Conference Google Scholar
- 19.A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935).CrossRefADSzbMATHGoogle Scholar
- 20.E.A. Rauscher, Complex Minkowski Space & Nonlocality on the Metric & Quantum Processes, in progress.Google Scholar
- 21.S.P. Sirag “A Mathematical Strategy for a Theory of Particles”, pps 579–588, The First Tucson Conference, Eds. S.R. Hameroff, A.W. Kasniak and A.C. Scott, MIT Press, Cambridge, MA (1996).Google Scholar
- 22.T.T. Wu & C.N. Yang, (1975), Phys. Rev. D12, 3845.ADSMathSciNetGoogle Scholar
- 23.N. Gisin, Phys. Lett. 143, 1 (1990).CrossRefGoogle Scholar
- 24.W. Tittel, J. Bredel, H. Zbinden & N. Gisin, Phys. Rev. Lett. 81, 3563.Google Scholar
- 25.E.A. Rauscher, Proc. 1st Int. Conf., Univ. of Toronto, Ontario, Canada, pp. 89–105, (1981).Google Scholar
- 26.T.R. Love, Int. J. of Theor. Phys. 32, 63 (1993).zbMATHMathSciNetCrossRefGoogle Scholar