Advertisement

Non-Abelian Gauge Groups for Real and Complex Amended Maxwell’s Equations

  • E. A. Rauscher
Conference paper
Part of the Fundamental Theories of Physics book series (FTPH, volume 126)

Abstract

We have analyzed, calculated and extended the modification of Maxwell’s equations in a complex Minkowski metric, M4 in a C2 space using the SU2gauge, SL(2,c) and other gauge groups, such as SUn for n>2 expanding the U1 gauge theories of Weyl. This work yields additional predictions beyond the electroweak unification scheme. Some of these are: 1) modified gauge invariant conditions, 2) short range non-Abelian force terms and Abelian long range force terms in Maxwell’s equations, 3) finite but small rest of the photon, and 4) a magnetic monopole like term and 5) longitudinal as well as transverse magnetic and electromagnetic field components in a complex Minkowskimetric M4 in a C4 space.

Keywords

Gauge Theory Gauge Condition Magnetic Monopole Nonlocality Property Electromagnetic Field Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Penrose and E.J. Newman, Proc. Roy. Soc. A363, 445 (1978).ADSMathSciNetGoogle Scholar
  2. 2.
    E.T. Newman, J. Math. Phys. 14, 774 (1973).zbMATHCrossRefADSGoogle Scholar
  3. 3.
    R.O. Hansen and E.T. Newman, Gen. Rel. and Grav. 6, 216 (1975).MathSciNetGoogle Scholar
  4. 4.
    E.T. Newman, Gen. Rel. and Grav. 7, 107 (1976).CrossRefADSGoogle Scholar
  5. 5.
    H.P. Stapp Phys. Rev. A47, 847 (1993) and Private Communication.ADSGoogle Scholar
  6. 6.
    J.S. Bell, Physics 1, 195 (1964).Google Scholar
  7. 7.
    J.F. Clauser and W.A. Horne Phys. Rev. 10D, 526 (1974) and private communication with J. Clauser 1977.ADSGoogle Scholar
  8. 8.
    A. Aspect, et. al. Phys. Rev. 49, 1804 (1982) and private communication.ADSMathSciNetGoogle Scholar
  9. 9.
    E.T. Newman and E.T. Newman, third MG meeting on Gen. Rel., Ed. Ha Nang, Amsterdam Netherlands, North-Holland, pgs 51–55 (1983).Google Scholar
  10. 10.
    Th. Kaluza, sitz. Berlin Press, A. Kad. Wiss, 968 (1921).Google Scholar
  11. 11.
    O. Klein Z. Phys. 37, 805 (1926) and O. Klein, Z. Phys. 41, 407 (1927).Google Scholar
  12. 12.
    J.P. Vigier, Found. Of Phys. 21, 125 (1991).MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    M.W. Evans and J.P. Vigier “the enigmatic photon” 1 and 2 “Non-Abelian Electrodynamics”, Kluwer Acad. Dordrecht (1994, 1995, 1996).Google Scholar
  14. 14.
    E.A. Rauscher, Bull. Am. Phys. Soc. 21, 1305 (1976).Google Scholar
  15. 15.
    E.A. Rauscher, J. Plasma Phys. 2.Google Scholar
  16. 16.
    T.T. Wu and C.N. Yang, “Concepts of Nonintergreble phase factors and global formulation of gauge fields”, Phys. Rev. D12, 3845 (1975).ADSMathSciNetGoogle Scholar
  17. 17.
    E.A. Rauscher, “D and R Spaces, Lattice Groups and Lie Algebras and their Structure”, April 17, 1999.Google Scholar
  18. 18.
    E.A. Rauscher “Soliton Solutions to the Schrödinger Equation in Complex Minkowski Space”, pps 89–105, Proceeding of the First International Conference Google Scholar
  19. 19.
    A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935).CrossRefADSzbMATHGoogle Scholar
  20. 20.
    E.A. Rauscher, Complex Minkowski Space & Nonlocality on the Metric & Quantum Processes, in progress.Google Scholar
  21. 21.
    S.P. Sirag “A Mathematical Strategy for a Theory of Particles”, pps 579–588, The First Tucson Conference, Eds. S.R. Hameroff, A.W. Kasniak and A.C. Scott, MIT Press, Cambridge, MA (1996).Google Scholar
  22. 22.
    T.T. Wu & C.N. Yang, (1975), Phys. Rev. D12, 3845.ADSMathSciNetGoogle Scholar
  23. 23.
    N. Gisin, Phys. Lett. 143, 1 (1990).CrossRefGoogle Scholar
  24. 24.
    W. Tittel, J. Bredel, H. Zbinden & N. Gisin, Phys. Rev. Lett. 81, 3563.Google Scholar
  25. 25.
    E.A. Rauscher, Proc. 1st Int. Conf., Univ. of Toronto, Ontario, Canada, pp. 89–105, (1981).Google Scholar
  26. 26.
    T.R. Love, Int. J. of Theor. Phys. 32, 63 (1993).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • E. A. Rauscher
    • 1
  1. 1.Tecnic Research LaboratoryApache JunctionUSA

Personalised recommendations